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Abstract

We introduce a new, generic framework for private data analysis. The goal of private data analysis is
to release aggregate information about a data set while protecting the privacy of the individuals whose
information the data set contains. Our framework allows one to release functions f of the data with
instance-specific additive noise. That is, the noise magnitude is determined not only by the function we
want to release, but also by the database itself. One of the challenges is to ensure that the noise magnitude
does not leak information about the database. To address that, we calibrate the noise magnitude to the
smooth sensitivity of f on the database x — a measure of variability of f in the neighborhood of the
instance x. The new framework greatly expands the applicability of output perturbation, a technique for
protecting individuals’ privacy by adding a small amount of random noise to the released statistics. To
our knowledge, this is the first formal analysis of the effect of instance-specific noise in the context of
data privacy.

Our framework raises many interesting algorithmic questions. Namely, to apply the framework one
must compute or approximate the smooth sensitivity of f on x. We show how to do this efficiently for
several different functions, including the median and the cost of the minimum spanning tree. We also
give a generic procedure based on sampling that allows one to release f(x) accurately on many databases
x. This procedure is applicable even when no efficient algorithm for approximating smooth sensitivity
of f is known or when f is given as a black box. We illustrate the procedure by applying it to k-SED
(k-means) clustering and learning mixtures of Gaussians.
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1 Introduction

Data privacy is a fundamental problem of the modern information infrastructure. Collections of personal
and sensitive data, previously the purview of governments and statistical agencies, have become ubiquitous
as database systems have grown larger and cheaper. Increasing volumes of information are collected and
archived by health networks, financial organizations, search engines, intrusion detection systems, social
networking systems, retailers and other enterprizes. The potential social benefits from analyzing these
databases are enormous. The main challenge is to release aggregate information about the databases while
protecting the privacy of individual contributors.

There is a vast body of work on the data privacy problem, both in statistics and computer science (for
references, see [1,9,26,27,18]). However, the schemes proposed in most of the literature lack analysis that is
up to the level of rigor expected in, for example, cryptography. Typically, the schemes have either no formal
privacy guarantees or ensure security only against a specific suite of attacks. For example, it is widely
believed in traditional research on data privacy that, since data mining algorithms are designed to reveal
only ‘global’ information, it is safe to apply them ’as they are’ to sensitive data and publish the results.
There is currently no formal substantiation of such an assessment.

This work is part of a newly emerging rigorous study of data privacy, inspired by research in cryptogra-
phy, which acquired the name of private data analysis. This line of work [11,17,16,4,7,8,12] presents precise
mathematical definitions of data privacy, that give meaningful guarantees in the presence of a strong, realis-
tic adversary. The most successful of these definitions, differential privacy [15] (see Definition 1.1), has lead
to an explosion of new results [12,13,6,3,21] . Protocols satisfying the definitions employ a technique called
output perturbation, according to which the results of data analysis are released after the addition of a small
amount of random noise1. Blum et al. [4] and Dwork et al. [15] present frameworks for releasing a specified
function f of the data x while preserving privacy. The noise added to f(x) in these frameworks depends
only on f , and not on the database x. This provides a provably secure method for releasing many useful
functions, such as means, variances, histograms, contingency tables and the singular value decomposition.

Instance-Specific Noise. We introduce a new generic framework for private data analysis. Our frame-
work allows one to release functions f of the data with instance-specific additive noise. That is, the noise
magnitude is determined not only by the function we want to release, but also by the database itself. One
of the challenges is to ensure that the noise magnitude does not leak information about the database. To
address that, we calibrate the noise magnitude to the smooth sensitivity of f on the database x — a measure
of variability of f in the neighborhood of the instance x. The new framework greatly expands the applica-
bility of output perturbation. To our knowledge, this is the first formal analysis of the effect on privacy of
instance-specific noise.

Our framework raises many interesting algorithmic questions. To apply the framework one must com-
pute or approximate the smooth sensitivity of f on x. These computations are non-trivial and, for some
functions f , NP -hard. The approximation problems are further complicated by the requirement that the
approximation must be smooth, that is, it should not change quickly in any neighborhood of its input space.
This requirement prevents the noise magnitude, which is based on the approximation to smooth sensitivity,
from leaking information.

Our framework generalizes the results of [4,15]. Those works calibrate noise to the global sensitivity, a
simple but often crude upper bound on the smooth sensitivity. For many functions f and databases x, we

1Since the conference version of our work has been published, promising techniques other than output perturbation have been
developed (see, for example, [21,5]). However, output perturbation is still the dominant method in the design of differentially
private protocols.
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can release f(x) with less noise than in [4,15]. In particular, there are many functions for which previous
frameworks are not applicable because they would add so much noise that the output would be meaningless.
We make several observations useful for computing and approximating smooth sensitivity, and demonstrate
their applicability for two types of data: real numbers contained in a bounded range, and graphs where
individuals hold information about edges. For real numbers, we give efficient algorithms for computing
and approximating the median and the minimum. For graphs, we give polynomial-time algorithms for
computing the cost of the minimum spanning tree, and the number of triangles.

Sample and Aggregate. The framework of smooth sensitivity is very powerful. However, in order to use it
directly for releasing a function f , one needs to design an efficient algorithm for computing or approximating
the smooth sensitivity of f . For a given function, such an algorithm might not exist or might be difficult
to design. More importantly, this step cannot be automated. In the interactive model, where users of the
statistics can specify the function f to be evaluated on the database, it implies that the smooth sensitivity for
all allowed user requests has to be analyzed and known in advance.

We present a sample and aggregate framework that circumvents these difficulties – a generic method
that is efficient for a large class of functions, and can be applied without an explicit computation of smooth
sensitivity. This method can be fully automated and works even when f is given as a black box. It allows
users to specify their query function f simply by giving a computer program.

For example, many data mining algorithms perform some kind of clustering on their data. The global
sensitivity framework [15] allows one to release the cost of clustering, but not cluster centers. In general,
we do not know how to compute or approximate smooth sensitivity of cluster centers. We illustrate the
sample and aggregate framework by applying it to two clustering problems: k-Squared Error Distortion
clustering (also called k-means) and learning mixtures of Gaussian distributions. In both cases, we show
that on interesting instances we can release the set of centers with very little noise.

In the following we review some of the prior research, and state our results.

1.1 Privacy Definition

As in [17,11,16,4,15,12], we consider a trusted agency setup, where users’ queries are answered by a trusted
agency that holds the database. Each query is a function f to be evaluated on the database. The database is
modeled as a vector x ∈ Dn, where each entry xi represents information contributed by one individual. Each
entry could be an individual’s salary, or the weight of an edge in a network, or any other arbitrary complex
data. The server runs an algorithm A on the database x and sends back A(x). For example, A(x) could be
f(x) with added random noise. Our goal is to makeA(x) as close to f(x) as possible, thus enabling the user
to learn his target value as accurately as possible, while preserving the privacy of individual contributors.

We use the privacy definition from [15,13], which limits the incremental information a user might learn
in addition to what he knew before seeing the released statistics.

Notation. The Hamming distance d(x, y) between two databases is the number of entries on which x and
y differ, i.e., d(x, y) = |{i : xi 6= yi}|. Two databases are neighbors if they differ in a single individual’s
data, i.e., d(x, y) = 1.

For a particular query f and a database x, the randomized algorithm A defines a distribution A(x) on
the outputs. An algorithmA is private if neighbor databases induce nearby distributions on the outputs. The
intuition is that, all other things being equal, roughly the same information should be released no matter
what a particular individual’s data is.
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Definition 1.1 (Differential Privacy2 [15,13]). A randomized algorithm A is (ε, δ)-differentially private if
for all x, y ∈ Dn satisfying d(x, y) = 1, and for all sets S of possible outputs

Pr[A(x) ∈ S] ≤ eε Pr[A(y) ∈ S] + δ .

When δ = 0, the algorithm is ε-differentially private.

If the agency uses a differentially private algorithm then no individual has a pronounced effect on the
statistics published by the agency, in the sense that the output distribution is almost the same whether the
individual supplies his actual data or something irrelevant.

Differential privacy can be defined analogously for interactive protocols where each round consists of the
server publishing one statistics in response to one query f by a user. This definition composes smoothly: a t-
round protocol, in which each round is individually ε-differentially private, is itself tε-differentially private.
Similarly, a t-round protocol, in which each round is (ε, δ)-differentially private, is (tε, tδ)-differentially
private. More generally:

Lemma 1.2 (Composition of Differentially Private Algorithms [14,20]). Let A1, . . . ,At be a sequence of
(ε, δ) differentially private algorithms, where for each i,Ai is selected based on the outputs ofA1(x), . . . , Ai−1(x).
Given any strategy for selecting the algorithmsAi, the protocol which outputsA1(x), . . . , At(x) is (tε, tδ)-
differentially private.

We focus on constructing differentially private algorithms that can be used on their own and in multi-
round protocols. Relying on Lemma 1.2, we omit from our discussion the noise magnitude dependency on
number of queries.

1.2 Calibrating Noise to Sensitivity

Recall that most works in private data analysis [11,16,4,15] use output perturbation, where privacy is
achieved by adding random noise that ‘masks’ the private information. To release a function f of the
database x, the server computes f(x) and publishes A(x) = f(x) + Z for some random variable Z. Here
we assume that f takes values in Rd, and use the L1 norm on Rd (denoted ‖ · ‖1, or simply ‖ · ‖) as a
distance metric on outcomes of f . This is mainly for ease of presentation as the following analysis may be
generalized to other metric spaces, such as the L2 (Euclidean) metric and the earthmover distance on sets of
points in Rd.

Definition 1.3 (Global Sensitivity [15]). For f : Dn → Rd, the global sensitivity of f (with respect to the
`1 metric) is

GSf = max
x,y:d(x,y)=1

‖f(x)− f(y)‖1.

Dwork et al. [15] showed how to construct differentially private estimates of a real function f by adding
noise sampled from the Laplace distribution with magnitude proportional to the global sensitivity:

Definition 1.4 (Laplace Distribution). The probability density function (p.d.f.) of the Laplace distribution
Lap(λ) is h(z) = 1

2λe
−|z|/λ. It has zero mean, and standard deviation

√
2λ.

Claim 1.5 ([15]). For all f : Dn → Rd, the database access mechanism Af (x) = f(x) + (Z1, . . . , Zd),
where the Zi are drawn i.i.d. from Lap(GSf/ε), is ε-differentially private.

2The term ”differential privacy” was coined by Mike Schroeder and first appeared in Dwork [12]; The paper that defined this
notion, [15], called it ε-indistinguishability. The variant with two parameters, ε and δ, first appeared in [13].
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Claim 1.5 yields two generic approaches to constructing database access mechanisms for functions
f . The first approach [15] is to show that GSf is low, and hence f(x) can be released with noise Z ∼
Lap(GSf/ε). The second approach [4] is to use Lemma 1.2 and express f in terms of functions g1, g2, . . .
with low global sensitivity. One needs then to analyze how the addition of noise to g1, g2, . . . (needed for
differential privacy) interferes with the computation of f .

These approaches are productive for many functions, such as sum queries [11,16]; Principle Compo-
nent Analysis, the Perceptron algorithm, k-means, learning ID3 decision trees, statistical learning [4]; his-
tograms, Singular Value Decomposition, distance to a property, and functions that can be estimated on all x
using small random samples from x [15].

1.3 Smooth Sensitivity

In the global sensitivity framework of [15] described above, noise magnitude depends on GSf and the
privacy parameter ε, but not on the instance x. For many functions, such as the median fmed, this approach
yields high noise, that does not reflect the function’s typical insensitivity to individual inputs. We propose a
local measure of sensitivity:

Definition 1.6 (Local Sensitivity). For f : Dn → Rd and x ∈ Dn, the local sensitivity of f at x (with
respect to the `1 metric) is

LSf (x) = max
y:d(x,y)=1

‖f(x)− f(y)‖1.

Observe that the global sensitivity from Definition 1.3 is GSf = maxx LSf (x). The notion of local sensi-
tivity is a discrete analogue of the Laplacian (or maximum magnitude of the partial derivative in different
directions). It has appeared before in the (seemingly unrelated) context of concentration of measure [29].
The current work is the first to use it in the context of private data analysis.

Suppose we release the median fmed(x) with noise magnitude proportional to LSfmed(x), instead of
GSfmed . The resulting algorithm would add significantly less noise for typical inputs. However, it is too
naı̈ve, and does not satisfy Definition 1.1 as the the noise magnitude itself reveals information about the
database (see Section 2 for more details).

Our goal is hence to add instance-specific noise with smaller magnitude than the worst-case noise
GSf/ε, and yet satisfy Definition 1.1. The reader might be concerned that when the noise depends on
the database, the client will not know the accuracy of the answer supplied by the database access mecha-
nism. However, the noise magnitude itself is guaranteed to be an insensitive function of the database. Hence,
if the client desires to query the database about the noise magnitude on the input x, he is guaranteed to get
the answer to this query with very little noise added.

We define a class of smooth upper bounds Sf on LSf such that adding noise proportional to Sf is safe.
We define a special smooth function S∗f that is optimal, in the sense that Sf (x) ≥ S∗f (x) for every other
smooth Sf , and show how to compute S∗f as well as smooth approximation to it for the median, and the cost
of a minimum spanning tree (MST).

There are many other functions for which global sensitivity framework yields unacceptably high noise
levels while the smooth sensitivity framework performs well on many instances. For some of them (e.g., the
minimum and the maximum), computing smooth sensitivity is trivial. (In fact, understanding the smooth
sensitivity of the minimum is needed for our algorithm for computing the smooth sensitivity of the MST
cost.) For others (e.g., the number of triangles in a graph), it requires more ingenuity. Finally, there are
very natural classes of functions (e.g., the cluster centers for various clustering problems and the problem
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of learning the mixtures of Gaussians), for which no efficient algorithms for approximating smooth sensi-
tivity are known. The sample and aggregate framework circumvents this difficulty by providing an efficient
database access mechanism that treats the query function as a black box.

1.4 The Sample and Aggregate Framework

Sample and aggregate works by replacing f with a related function f̄ for which smooth sensitivity is low
and efficiently computable. The function f̄ can be thought of as a “smoothed” version of f . First, f
(restricted to smaller inputs) is evaluated on a sublinear number of random samples from database x. Such
evaluations are performed several times and the results are combined with a novel aggregation function that
we call the center of attention. The output of this computation, denoted by f̄ , is released using the smooth
sensitivity framework. The released value is close to the desired answer, f(x), on databases for which f(x)
is approximated well by evaluating f on the random samples. The intuition is that for such x each entry
xi can be changed without affecting the value of the function significantly, since this entry is not likely to
appear in the sample.

Dwork et al. [15, Lemma 1] proved that if f can be approximated well from random samples on all
inputs then the global sensitivity of f is low, and consequently f can be released with a small amount of
noise. This result looks similar to our claim that in the sample and aggregate framework, f(x) will be
released accurately on inputs for which f(x) is approximated well from random samples. However, our
result is qualitatively stronger in two respects. First, our result is instance-specific: it applies to input x even
if for some other x′ 6= x, evaluating f on a random sample from x′ does not yield a good approximation
to f(x′). Second, the result of [15] is not algorithmic: since the approximation guarantee must hold for
all instances, it only gives a proof technique to bound the global sensitivity of f . In contrast, sample
and aggregate yields efficient database access mechanisms for all query functions that can be evaluated
efficiently on samples from the database.

Our mechanism releases accurate answers on several interesting classes of inputs. For example, we
prove that k-SED (k-means) cluster centers are released accurately when the data is well-separated, ac-
cording to the definition proposed by Ostrovsky et al. [25]. This definition implies that all near-optimal
clusterings of x induce similar partitions of the points of x. [25] use this fact to show that well-separated
data sets are amenable to heuristics based on Lloyd’s algorithm. Our techniques also allow one to learn and
publish accurate parameters of a mixture of k spherical Gaussian distributions when the data x consists of
polynomially-many (in the dimension and k) i.i.d. samples from the distribution.

Previously, Blum et al. [4] showed that if there is an algorithm for approximating f(x) using “noisy
sum queries”, then f(x) can be released accurately while preserving privacy. Their framework can also be
interpreted as identifying a “good” class of functions and inputs for which one can add relatively little noise.
Their approach requires a fairly in-depth understanding of f , as one must be able to express f in terms of a
limited class of queries to the data.

Using their framework, Blum et al. [4] gave a private version of a specific heuristic for k-SED clustering,
called Lloyd’s algorithm (or the k-means algorithm). They did not, however, prove guarantees on how close
the final output of the algorithm is to the optimal cluster centers for x. To our knowledge, our algorithms
are the first to provide such guarantees while preserving privacy.
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2 Instance-Specific Additive Noise

Recall that in the interactive framework, the database is stored on the trusted server. When the user needs to
obtain f(x), he sends a query f to the server and gets f(x)+N(x)Z as a reply, whereZ is a random variable
drawn from a noise distribution in Rd (fixed in advance and known to the user) with standard deviation 1 in
each coordinate. The sample from the noise distribution is multiplied by the scaling factor N(x), which we
refer to as the noise magnitude. As explained in the Introduction, [15] gave ε-differentially private protocols
where the noise magnitude N(x) is proportional to global sensitivity of f(·) (and therefore independent
of database x). In this section, we explain how to safely release f(x) with potentially much smaller noise
magnitude, tailored to database x.

2.1 Smooth Upper Bounds on LSf and Smooth Sensitivity

For a query function f , our goal is to release f(x) with less noise when the local sensitivity of f at x is
lower. This would allow us to release functions with large global (worst case) sensitivity, but typically small
local sensitivity with much greater accuracy than allowed in [15].

Example 1. Let fmed(x) = median(x1, . . . , xn) where xi are real numbers from a bounded interval, say,
D = [0,Λ]. For simplicity, assume n is odd and the database entries are sorted in the nondecreasing order:
x1 ≤ · · · ≤ xn. Let m = n+1

2 be the rank of the median element. Global sensitivity of the median,
GSfmed , is Λ, since for x1 = · · · = xm = 0 and xm+1 = · · · = xn = Λ, fmed(x1, . . . , xn) = 0 and
fmed(x1, . . . , xm−1,Λ, xm+1, . . . , xn) = Λ. In this case, adding noise proportional to GSfmed completely
destroys the information. However, on typical inputs, fmed is not very sensitive: LSfmed(x) = max(xm −
xm−1, xm+1 − xm).

Ideally, we would like to release f(x) with noise magnitude proportional to LSf (x). However, noise
magnitude might reveal information about the database. For example, in the case of the median, if the
noise magnitude is proportional to LSfmed(x), then the probability of receiving a non-zero answer when
x1 = · · · = xm+1 = 0, xm+2 = · · · = xn = Λ is zero (since the median is 0 and the local sensitivity is also
0) whereas the probability of receiving a non-zero answer on the neighboring database x1 = · · · = xm =
0, xm+1 = · · · = xn = Λ is significant (since the median is 0 but the local sensitivity is now Λ). Thus, the
protocol is not (ε, δ)-differentially private when δ is small (regardless of ε). ♦

The lesson from this example is that the noise magnitude has to be an insensitive function. To decide
on the noise magnitude we will use a smooth upper bound on the local sensitivity, namely, a function S that
is an upper bound on LSf at all points and such that ln(S(·)) has low sensitivity. We say S is β-smooth if
GSln(S(·)) ≤ β.

Definition 2.1 (A Smooth Bound on LS). For β > 0, a function S : Dn → R+ is a β-smooth upper bound
on the local sensitivity of f if it satisfies the following requirements:

∀x ∈ Dn : S(x) ≥ LSf (x) ; (1)

∀x, y ∈ Dn, d(x, y) = 1 : S(x) ≤ eβ · S(y) . (2)

Note that the constant function S(x) = GSf meets the requirements of Definition 2.1 with β = 0. When
β > 0 it is a very conservative upper bound on LSf . A function that is the smallest to satisfy Definition 2.1
is the smooth sensitivity of f :
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Definition 2.2 (Smooth sensitivity). For β > 0, the β-smooth sensitivity of f is

S∗f,β(x) = max
y∈Dn

(
LSf (y) · e−βd(x,y)

)
.

Lemma 2.3. S∗f,β is a β-smooth upper bound on LSf . In addition, S∗f,β(x) ≤ S(x) for all x ∈ Dn for
every β-smooth upper bound S on LSf .

Proof. To see that S∗f,β is an upper bound on LSf , observe that

S∗f,β(x) = max

(
LSf (x), max

y 6=x; y∈Dn

(
LSf (y) · e−βd(x,y)

))
≥ LSf (x).

Next we show that S∗f,β is β-smooth, i.e, that S∗f,β(y) ≥ e−βS∗f,β(x) for all neighboring databases x
and y. Fix x, y ∈ Dn with d(x, y) = 1. Let x′ ∈ Dn be such that S∗f,β(x) = LSf (x′) · e−βd(x,x′). By the
triangle inequality, d(y, x′) ≤ d(y, x) + d(x, x′) = d(x, x′) + 1. Therefore,

S∗f,β(y) ≥ LSf (x′) · e−βd(y,x′)

≥ LSf (x′) · e−β(d(x,x′)−1)

= e−β · LSf (x′) · e−βd(x,x′) = e−β · S∗f,β(x).

Now let S be a function satisfying Definition 2.1. We will show that S(x) ≥ S∗f,β(x) for all x ∈ Dn.
To prove this, it is enough to establish that S(x) ≥ LSf (y) · e−βd(x,y) for all x, y ∈ Dn. We demonstrate it
by induction on d(x, y).

The base case, S(x) ≥ LSf (x), is the requirement (1) of Definition 2.1. For the induction step, suppose
S(x′) ≥ LSf (y) · e−βd(x′,y) for all x′, y at distance k. Consider x, y at distance k + 1. There exists x′:
d(x, x′) = 1, d(x′, y) = k. By requirement (2) of Definition 2.1, S(x) ≥ S(x′) · e−β . Using the induction
hypothesis, S(x′) ≥ LSf (y) · e−βd(x′,y), we get S(x) ≥ LSf (y) · e−β(d(x′,y)+1) = LSf (y) · e−βd(x,y), as
required.

2.2 Calibrating Noise According to Smooth Upper Bounds on LSf

This section explains how to select a noise distribution so that adding noise proportional to a smooth up-
per bound on the local sensitivity results in a differentially private algorithm. In our smooth sensitivity
framework, the noise magnitude is proportional to Sf (x)

α , where Sf is a β-smooth upper bound on the local
sensitivity of f , and α, β are parameters of the noise distribution.

For functions that return a single real value, we obtain the following concrete bounds, which follow from
Lemmas 2.7 and 2.9.

Corollary 2.4 (Calibrating Noise to Smooth Bounds on the Sensitivity, 1-Dimensional Case). Let f : Dn →
R be any real-valued function and let S : Dn → R be a β-smooth upper bound on the local sensitivity of f .
Then

1. If β ≤ ε
2(γ+1) and γ > 1, the algorithm x 7→ f(x) + 2(γ+1)S(x)

ε · η, where η is sampled from the

distribution with density h(z) ∝ 1
1+|z|γ , is ε-differentially private.

7



2. If β ≤ ε
2 ln( 2

δ
)

and δ ∈ (0, 1), the algorithm x 7→ f(x) + 2S(x)
ε · η, where η ∼ Lap(1), is (ε, δ)-

differentially private.

For functions taking values in Rd, the situation is more complicated since the smoothing parameter β
will depend on d as well as ε and δ. Moreover, there are many natural choices of metrics with respect to
which one may measure sensitivity. We discuss the `1 (Lemma 2.9) and `2 metrics below (Lemma 2.10).

2.2.1 Admissible Noise Distributions

We start by abstracting out a requirement on admissible noise distributions in Definition 2.5. In Lemma 2.6,
we prove that adding admissible noise and releasing the result is differentially private. Then we give several
examples of admissible noise distributions, including Laplace and Gaussian, and work out their parameters.

Notation. For a subset S of Rd, we write S + ∆ for the set {z + ∆ | z ∈ S},́ and eλ · S for the set
{eλ · z | z ∈ S} . We also write a± b for the interval [a− b, a+ b].

Definition 2.5 (Admissible Noise Distribution). A probability distribution on Rd, given by a density func-
tion h, is (α, β)-admissible (with respect to `1) if, for α = α(ε, δ), β = β(ε, δ), the following two conditions
hold for all ∆ ∈ Rd and λ ∈ R satisfying ‖∆‖1 ≤ α and |λ| ≤ β, and for all measurable subsets S ⊆ Rd:

Sliding Property: Pr
Z∼h

[
Z ∈ S

]
≤ e

ε
2 · Pr

Z∼h

[
Z ∈ S + ∆

]
+ δ

2 .

Dilation Property: Pr
Z∼h

[
Z ∈ S

]
≤ e

ε
2 · Pr

Z∼h

[
Z ∈ eλ · S

]
+ δ

2 .

Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. h(z) = 1
2
e−|z|, plotted as a solid line. The dotted lines plot

the densities h(z + 0.3) (left) and e0.3h(e0.3z) (right).

The definition requires the noise distribution to not change much under translation (sliding) and scaling
(dilation). See Fig. 1 for an example. A distribution satisfying the two properties can be used to add noise
proportional to a smooth upper bound on local sensitivity:

Lemma 2.6. Let h be an (α, β)-admissible noise probability density function, and let Z be a fresh random
variable sampled according to h. For a function f : Dn → Rd, let S : Dn → R be a β-smooth upper bound
on the local sensitivity of f . Then algorithm A(x) = f(x) + S(x)

α · Z is (ε, δ)-differentially private.

For two neighbor databases x and y, the output distributionA(y) is a shifted and scaled version ofA(x).
The sliding and dilation properties ensure that Pr[A(x) ∈ S] and Pr[A(y) ∈ S] are close for all sets S of
outputs.

Proof of Lemma 2.6: For all neighboring x, y ∈ Dn and all sets S, we need to show that

Pr[A(x) ∈ S] ≤ eε · Pr[A(y) ∈ S] + δ.

8



Denote S(x)
α by N(x). Observe that A(x) ∈ S if and only if Z ∈ S1, where S1 = S−f(x)

N(x) . Let S2 =

S1 + f(y)−f(x)
N(x) = S−f(y)

N(x) and S3 = S2 · N(x)
N(y) = S−f(y)

N(y) . Then

Pr[A(x) ∈ S] = Pr
z∼h

[z ∈ S1]

≤ Pr
z∼h

[z ∈ S2] · eε/2 +
δ

2

≤ Pr
z∼h

[z ∈ S3] · eε +
δ

2
· eε/2 +

δ

2
= Pr

z∼h
[A(y) ∈ S] · eε + δ.

The first inequality holds since h satisfies the Sliding Property of Definition 2.5 and since

‖f(y)− f(x)‖
N(x)

= α · ‖f(y)− f(x)‖
S(x)

≤ α · ‖f(y)− f(x)‖
LSf (x)

≤ α.

The second inequality holds since h satisfies the Dilation Property of Definition 2.5 and since S(x) is β-
smooth, which implies that

∣∣∣ln N(x)
N(y)

∣∣∣ =
∣∣∣ln S(x)

S(y)

∣∣∣ ≤ | ln e±β| ≤ β.

2.2.2 Examples of Admissible Noise Distributions

We discuss three families of admissible distributions on the real line; in higher dimensions, we use products
of these distributions (that is, we add independent noise in each coordinate). The first family is a general-
ization of the Cauchy distribution, which has density proportional to 1

1+z2
. It yields “pure” ε-differential

privacy (that is, with δ = 0). We subsequently consider the Laplace and Gaussian distributions, which lead
to mechanisms with δ > 0 (but tighter concentration and sometimes smaller noise).

Throughout the following proofs, we will use the following idea: to show that a dsitribution with density
h satisfies a property like dilation, it suffices to show that the logarithm of the ratio ln(h(z+∆)

h(z) ) is bounded
with high probability over z drawn according to the distribution given by h. Simialrly, for dilation we
analyze ln( e

λh(eλz)
h(z) ).

Lemma 2.7. For any γ > 1, the distribution with density h(z) ∝ 1
1+|z|γ is ( ε

2(γ+1) ,
ε

2(γ+1))-admissible (with
δ = 0). Moreover, the d-dimensional product of independent copies of h is ( ε

2(γ+1) ,
ε

2d(γ+1))- admissible.

Proof. We first consider a dilation by a factor of eλ, where |λ| < ε
2γ . To show the dilation property, it is

sufficient to show that the logarithm of the ratio of the densities, ln( e
λh(eλz)
h(z) ) = ln( e

λ(1+(λ|z|)γ)
1+|z|γ ), is at most

ε′
def
= ε/2. For λ ≥ 0, we can bound (1+(eλ|z|)γ)

1+|z|γ above by (eλ|z|)γ
|z|γ = eλγ , so we get ln( e

λh(eλz)
h(z) ) < λ(γ+ 1).

This is at most ε′ since λ < ε
2(γ+1) . A symmetric argument works for λ < 0.

To prove the sliding property, write the logarithm of the ratio of the densities as ln(h(z+∆)
h(z) ) as a differ-

ence φ(|z|)− φ(|z + ∆|), where φ(z) = ln(1 + zγ). By the mean value theorem, there exists a point ζ > 0
such that |φ(|z + ∆|)− φ(|z|)| ≤ ∆|φ′(ζ)|. The magnitude of the derivative φ′ is bounded by γ: for any ζ,
φ′(ζ) = γζγ−1

1+ζγ = γ
ζ+ζ−(γ−1) , and one of the terms ζ and ζ−(γ−1) is at least 1 (recall γ − 1 > 0). Combining

these bounds, we get | ln(h(z+∆)
h(z) )| ≤ ∆γ. Since ∆ < ε/2(γ + 1), the logarithm of the densities’ ratio is at

most ε′ = ε/2, as desired.
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If we consider the d-wise product of h, then dilation by eλ can increase each of the components of the
product density by eλ(γ−1), for a total increase of at most edλ(γ−1). It suffices to take λ ≤ ε

2d(γ+1) . In the
case of translation by a vector ∆ = (∆1, ...∆d) ∈ Rd, the i-th component gets increased by a factor of e∆iγ ,
so the overall increase is at most e‖∆‖1γ . It therefore suffices to take ‖∆‖1 ≤ ε

2(γ+1) .

A simple observation gives an intuition to why δ = 0 implies an inverse polynomial decrease. Con-
sider a distribution h(z) that behaves asymptotically as e−f(z) for some f . By the dilation property,
e−f(z)/e−f(eβz) = e−f(z)+f(eβz) < eε for some fixed ε or, equivalently, f(eβz)−f(z) < ε, for all z ∈ R. If
ε/β is bounded above, the constraint implies that f(z) > c ln(|z|) for some fixed c. Hence h(z) = Ω(1/zc).
To allow noise distributions with exponentially decreasing tails (such as Gaussian and Laplace), we must
therefore take δ > 0.

To prove sliding, it suffices to prove that the log-ratio ln(h(z+∆)
h(z) (respectively, ln( e

dλh(eλz)
h(z) )) is bounded

above by ε
2 with probability at least 1− δ

2 . For both Gaussian and Laplace variables, the log-ratio is tied to
the probability that the noise variable has large norm (i.e. lies far out on the tail). In high dimension, this
probability is somewhat messy to state, so we first introduce some notation.

Definition 2.8. Given a real-valued random variable Y and a number δ ∈ (0, 1), let ρδ(Y ) be the (1− δ)-
quantile of Y , that is, the least solution to Pr(Y ≤ ρδ) ≥ 1− δ.

Lemma 2.9. For ε, δ ∈ (0, 1), the d-dimensional Laplace distribution, h(z) = 1
2d
· e−‖z‖1 , is (α, β)-

admissible with α = ε
2 , and β = ε

2ρδ/2(‖Z‖1) , where Z ∼ h. In particular, it suffices to use α = ε
2 and

β = ε
4(d+ln(2/δ)) . For d = 1, it suffices to use β = ε

2 ln(2/δ) .

Proof. The sliding property for Laplace was proven in [15]. For the dilation property, consider λ > 0. In
this case, h(eλz) < h(z), so the log-ratio ln( e

dλh(eλz)
h(z) ) is at most dλ ≤ ε

2ρδ′ (‖Z‖1) (where δ′ def
= δ

2 ). The
median of the distribution ‖Z‖1 is at most d and δ′ < 1/2, so ρδ′(‖Z‖1) > d. Thus λd is at most ε2 .

Next, we prove the dilation property for λ < 0. The ratio h(eλz)
h(z) is exp(|z|(1− eλ)). Since 1− eλ ≤ |λ|,

we get that ln( e
λh(eλz)
h(z) ) is at most |z|λ. Consider the event G = {z : |z| ≤ ρδ}. Under this event, the log-

ratio above is at most ε/2. The probability of G under density h is 1− δ. Thus, probability of a given set S
under h is at most Prh[S∩G]+Prh[Ḡ] ≤ eε/2 Prh′ [S∩G]+ δ

2 ≤ e
ε/2 Prh′ [S]+ δ

2 , where h′(z) = eλh(eλz)
is the density of the dilated distribution.

The norm ‖Z‖1 is a sum of d indpendent exponential random variables. By Fact A.1, the quantile ρδ′ is
at most 2d+ 2 ln(1/δ′), so it suffices to take β = ε

4(d+ln(2/δ)) <
ε

2ρδ′ (‖Z‖1) .

Here, we work out the details for the case of Gaussian noise. This type of noise is useful since it allows
us to tailor the noise level to a function’s sensitivity in the `2 (Euclidean) norm. This will be useful when
we consider k-means clustering in high dimensions, for example, where the Euclidean metric is natural.

Lemma 2.10 (Gaussian Distribution). For ε, δ ∈ (0, 1), the d-dimensional Gaussian distribution, h(z) =
1

(2π)d/2
· e−

1
2
‖z‖22 , is (α, β)-admissible for the Euclidean metric with α = ε

5ρδ/2(Z1) , and β = ε
2ρδ/2(‖Z‖22)

,

where Z = (Z1, ..., Zd) ∼ h.
In particular, it suffices to take α = ε

5
√

2 ln(2/δ)
and β = ε

4(d+ln(2/δ)) .

Proof. The sliding property was proven implicitly by Blum, Dwork, McSherry and Nissim [4]. Consider
a shift ∆ ∈ Rd, with ‖∆‖2 ≤ α. Since Gaussian noise is spherically symmetric, we can consider ∆ =
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(α, 0, ..., 0) without loss of generality. Then the ratio h(z+∆)
h(z) reduces to the ratio of a one-dimensional

Gaussian density evaluated at points z1 and z1 + α. This ratio is exp(|z1|2 − |z1 + α|2), which is at most
exp(2α|z1|+ α2).

It therefore suffices to prove that 2α|z1| + α2 ≤ ε/2 with probability at least δ. Let G be the event
|z1| < ρδ′(z1). Conditioned on G, 2α|z1| + α2 ≤ 2ε

5 + ε2

25 ≤ ε/2, as desired. (The last inequality uses the
assumption that ε < 1, and ρδ′(|Z1|) > 1.) The probability of G is δ′ = δ/2, which bounds the additive
term in the sliding property. Because |z1| is is normal with mean 0 and variance 1, we have ρδ′

√
2 ln(2/δ),

by a standard tail bound (Fact A.2). So it suffices to take α = ε

5
√

2 ln(2/δ)
.

For dilation by a factor of λ > 0, the density h(eλz) is less than h(z) for all z, so ln( e
dλh(eλz)
h(z) ) ≤ dλ <

ε/2 (since the median of ‖Z‖22 is at least d).
For λ < 0, note that ln(h(eλz)

h(z) ) = exp(1
2‖z‖

2
2(1− e2λ)) ≤ ‖z‖22 · |λ|. By the definition, the norm ‖z‖22

exceeds ρδ′(‖Z‖22) = ε
2|λ| with probability at most δ′ = δ/2. Under this condition, ‖z‖22 · |λ| ≤ ε

2 , which
implies the dilation condition.

Finally, we can bound ρδ′(‖Z‖22) by 2d+ 4 ln(1/δ′), to show that β = ε
4(d+ln(2/δ)) is sufficient.

3 Computing Smooth Sensitivity

In this section we show how to compute smooth sensitivity S∗f,ε(x), as in Definition 2.2, for several specific
functions: median, minimum, the cost of a minimum spanning tree and the number of triangles in a graph.
We also construct a function for which the smooth sensitivity is hard to compute or even approximate.

First we give some generic observations on computing smooth sensitivity. We start by defining a function
that describes how much the sensitivity can change when up to k entries of x are modified. This function
has to be well understood in order to compute the smooth sensitivity of f .

Definition 3.1. The sensitivity of f at distance k is

A(k)(x) = max
y∈Dn: d(x,y)≤k

LSf (y) .

Now smooth sensitivity can be expressed in terms of A(k):

S∗f,ε(x) = max
k=0,1,...,n

e−kε
(

max
y: d(x,y)=k

LSf (y)

)
= max

k=0,1,...,n
e−kεA(k)(x) .

Thus, to compute the smooth sensitivity of f at x, it suffices to understand A(k)(x).
For functions for which we cannot compute S? efficiently, we might be able to give an efficient approx-

imation algorithm. We stress that not every approximation to S∗ is appropriate in our framework: some
approximations to S∗ might leak information. The function computed by an approximation algorithm is ac-
ceptable only if it is a smooth upper bound on LSf (x). The next claims provide methods for giving smooth
upper bounds on local sensitivity.

Claim 3.2. For a given value k0(n), let

Ŝf,ε(x) = max(GSf · e−εk0 , max
k=0,...,k0−1

e−εk ·A(k)(x)).

Then S̃f,ε(x) is an ε-smooth upper bound on local sensitivity.
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Proof. Consider two neighboring inputs x and y.

Claim 3.3. Let S̃f,ε(x) = maxk=0,...,n(Uk(x) · e−εk) where Uk satisfies

1. LSf (x) ≤ U0(x), and

2. Uk(x) ≤ Uk+1(y) for all x, y such that d(x, y) = 1.

Then S̃f,ε(x) is an ε-smooth upper bound on local sensitivity.

Proof. We need to show that equations (1) and (2) of Definition 2.1 hold for S̃f,ε(x). Equation (1) holds as

LSf (x) ≤ U0(x) ≤ S̃f,ε(x).

Equation (2) holds as

S̃f,ε(x) = max
k=0,...,n

e−εk · Uk(x) ≤ eε · max
k=1,...,n

e−εk · Uk(y) ≤ eε · S̃f,ε(y).

3.1 Smooth Sensitivity of the Median

Recall that fmed(x1, ..., xn) was defined to be the median of values in D = [0,Λ]. For simplicity, assume n
is odd, and the database elements are in nondecreasing order: 0 ≤ x1 ≤ · · · ≤ xn ≤ Λ. In Example 1 we
observed that GSfmed = Λ, and LSfmed = max(xm − xm−1, xm+1 − xm) for m = n+1

2 . For notational
convenience, define xi = 0 for i ≤ 0 and xi = Λ for i > n.

Proposition 3.4. The smooth sensitivity of the median is

S∗fmed,ε(x) = max
k=0,...,n

(e−kε · max
t=0,...,k+1

(xm+t − xm+t−k−1)).

It can be computed in time O(n log n).

Before we prove the proposition, we illustrate the result with an example. Consider an instance where
the points xi are restricted to the interval [0, 1] (that is, Λ = 1) and the points are evenly spaced the interval
(that is, xi = i

n for i = 1, ..., n). In this case, S∗(x) = maxk e
−εk · k+1

n . The maximum occurs at k = 1/ε.
We get S∗ ≤ 1

εn and so the magnitude of the noise we add is 1
ε2n

. For comparison, the noise magnitude for
fmed in the global sensitivity framework of [15] is 1/ε; adding noise of that magnitude essentially wipes out
all information about the median since the extreme values, 0 and 1 are hard to distinguish.

Proof. By changing up to k entries in x1, . . . , xn to 0 or Λ, one can shift the median anywhere in the interval
[xm−k, xm+k]. The local sensitivity at distance k is maximized when the new median is an end point of a
large empty interval. This is achieved when entries xm−k+t, . . . , xm−1+t for some t = 0, . . . , k + 1 are
modified as follows: xi with i < m are set to 0 and xi with i ≥ m are set to Λ. Thus,

A(k)(x) = max
y: d(x,y)≤k

LS(y) = max
0≤t≤k+1

(xm+t − xm+t−k−1) .

As A(k) is computable in time O(k), we get that S∗fmed(x) = maxk e
−εkA(k)(x) is computable in time

O(n2). However, one in fact give an O(n log n)-time algorithm for computing S∗fmed(x). The algorithm we
give here is due to Sergey Orshanskiy.
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The idea behind the algorithm is to collapse and reorder the terms in the “max” expression that de-
fines S∗fmed(x). First, note that S∗fmed(x) = maxi<j(xj − xi)eε(j−i+1). For every index i < n

2 , let j∗(i)
be the index of the right endpoint of the “best” interval whose left endpoint is xi, that is, let j∗(i) =
argmaxj≥n/2(xj − xi)eε(j−i+1). In order to compute S∗fmed(x), it suffices to compute j∗(i) for all values
of i, since given the j∗ values one can compute S∗fmed(x) in time O(n). So we focus on computing the list
j∗(1), ..., j∗(n) in time O(n log n).

Suppose we know j∗(a) and j∗(c) where a < c are indices in {1, ..., n}. For any index b between a
and c, we can compute j∗(b) in time O(j∗(c) − j∗(a)) since the monotonicity of j∗ allows us to restrict
the search to {j∗(a), ..., j∗(c)}. A natural strategy to compute all the j∗ values in {a, ..., c} is thus to first
compute j∗(a+c

2 ) and use it to speed up computation of the remaining values. We obtain the following
recursive algorithm:

Algorithm 1: J-List(a, c, L, U )
// Returns the list j∗(a), ..., j∗(c) assuming that L ≤ j∗(a) and j∗(c) ≤ U
if c < a then

return (empty list);
else

b← b(a+ c)/2c;
j∗(b)← argmaxL≤j≤U (xj − xb)eε(j−b+1) // This takes time O(U − L).

return Concatenate(J-List(a, b− 1, L, j∗(b)), j∗(b),J-List(b+ 1, c, j∗(b), U));

The initial call of the algorithm is J-List(1, n, 1, n). On inputs a, c, L, U , the algorithm above runs in
time O(n+w log n) where n = c− a and w = U −L. This can be proved by straightforward induction on
n and w.

3.1.1 Linear and Sublinear Approximations to the Median’s Smooth Sensitivity

We present two approximation algorithms, based on Claims 3.2 and 3.3, that give smooth upper bounds
on S∗fmed,ε and run faster than the (known) algorithm for exact computation. The first one computes a
factor of 2 approximation in time O(n). The second has additive error Λ

poly(n) and runs in (sublinear) time

O((log2 n)/(ε2)). In both cases, we assume that the data is initially sorted. The second algorithm is able to
run in sublinear time because it inspects only the values xi that have rank close to n/2.

Define Ŝfmed,ε as in Claim 3.2 and S̃fmed,ε as in Claim 3.3, where Uk(x) = xm+k+1 − xm−k−1 and
k0 = O(log n/ε).

Claim 3.5. Both S̃fmed,ε and Ŝfmed,ε are ε-smooth upper bounds on LSfmin . Furthermore:

1. S̃fmed,ε(x) ≤ 2S∗fmin,ε(x); moreover, S̃fmed,ε(x) can be computed in time O(n); and

2. Ŝfmed,ε(x) ≤ S∗fmin,ε(x) + Λ
poly(n) ; moreover, Ŝfmed,ε(x) can be computed in time O

(
log2 n
ε2

)
.

Proof. That S̃fmed,ε and Ŝfmed,ε are ε-smooth upper bounds on LSfmin immediately follows from claims 3.2
and 3.3. For the first part, observe thatUk(x) = (xm+k+1−xm)+(xm−xm−k−1) ≤ 2A(k)(x). The running
time bound is straightforward. For the second part, note that Ŝf,ε(x) is always within additive error e−εk0
from S∗f,ε(x). Substituting k0 = O(log n/ε) gives the required additive bound. Recall that A(k)(x) can be

computed in time O(k). Therefore, Ŝfmed,ε(x) is computable in time O(k2
0) = O

(
log2 n
ε2

)
.
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3.2 Smooth Sensitivity of the Minimum

Computing the smooth sensitivity of the minimum function is very simple. We present it here for complete-
ness, as it is required for understanding the smooth sensitivity of the MST cost.

Let fmin(x) = min(x1, . . . , xn), and assume for simplicity that 0 ≤ x1 ≤ . . . ≤ xn ≤ Λ. The global
sensitivity GSfmin

= Λ. For notational convenience, let xk = Λ for k > n.

Claim 3.6. S∗fmin,ε
(x) = maxk=0,...,n(max(xk+1, xk+2 − x1) · e−kε) and can be computed in time O(n).

Proof. It is easy to see that the largest change in fmin(x) is observed either when some xi is dropped to 0 or
when x1 is raised to a value at least x2. Thus, LSfmin

(x) = max(x1, x2 − x1). Similarly, the sensitivity at
distance k is A(k)(x) = max(xk+1, xk+2 − x1). It follows that S∗fmin,ε

(x) = maxk=0,...,n(A(k)(x) · e−kε)
and therefore can be computed in time O(n).

3.3 Smooth Sensitivity of The Cost of a Minimum Spanning Tree

Let G = (V,E) be an undirected connected graph with edge weights w(e) ∈ [0,Λ] for all e ∈ E, where
each edge weight is reported to the database by an individual. Let fMST(G) be the MST cost in G. The
global sensitivity, GSfMST , is Λ because for the complete graph with all weights equal to Λ, the MST cost
decreases by Λ when one of the weights is changed to 0. The local (and smooth) sensitivity can be much
lower, though. For example, in a 2-connected graph where all edge weights are less than some number w∗,
the local sensitivity will be at most w∗ (since increasing the weight of one edge drastically will simply lead
to it being replaced in the MST by an edge with weight at most w∗). Here we show how to compute the
smooth sensitivity of fMST in polynomial time.

The main idea in the analysis is to express the local sensitivity of fMST in terms of the local sensitivity
of the minimum function. Let fmin(x) = min(x1, . . . , xn), where 0 ≤ x1 ≤ . . . ≤ xn ≤ Λ. It is not hard
to verify that the sensitivity of fmin at distance k is A(k)(x) = max(xk+1, xk+2 − x1), where xk = Λ for
k > n.

We will show that the local sensitivity of fMST is the maximum of the local sensitivities of minimum
functions, where the maximum is taken over all cuts of G.

First, some notation: A cut in G is a partition of the vertices V in two nonempty subsets, S and V/S.
With some abuse of terminology, we call S ⊂ V a cut when we mean partition (S, V/S). We say an edge
(i, j) crosses the cut S when i ∈ S and j ∈ V/S. For a cut S ⊂ V , let wt(S) denote the weight of the t-th
lightest edge in the cut, i.e., the t-th element in the list {w((i, j)) | i ∈ S, j ∈ V/S}, sorted in non-decreasing
order. Note that wt(s) = Λ if the cut S has less than t edges. Let `(S) = |{(i, j) | i ∈ S, j ∈ V/S}| denote
the number of edges crossing the cut.

Lemma 3.7. The local sensitivity of fMST at distance k is

A
(k)
fMST

(G) = max
S⊂V

A
(k)
fmin

(
w1(S), w2(S), . . . , w`(S)(S)

)
.

We defer the proof of Lemma 3.7 to the next section (Section 3.3.1). For now, note that one can substitute
A

(k)
fmin

(w1, . . . , wt) = max(wk+1, wk+2 − w1), where wk = Λ for k > t, into the expression for A(k)
fMST

(G)
in Lemma 3.7 and exchange the order of the maxima to get

A
(k)
fMST

(G) = max(max
S⊂V

wk+1(S),max
S⊂V

(wk+2(S)− w1(S))) (3)

Lemma 3.8. The smooth sensitivity of fMST can be computed in time polynomial in the number of edges.
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Proof. Recall that the smooth sensitivity of fMST, denoted by S∗fMST,ε
(G), is maxk≤n e

−kεA
(k)
fMST

(G). It thus

suffices to explain how to compute A(k)
fMST

(G). The expression for A(k)
fMST

in Equation 4 is a maximum of two
terms. We explain how to compute each term separately.

To compute maxS wk(S), we compute minimum cuts in several unweighted graphs related to G. Let
Ew = {e ∈ E | w(e) ≤ w}. Let Gw be the (undirected) unweighted graph (V,Ew). Let cw =
cost(min-cut(Gw)), that is, the number of edges in the minimum cut of Gw. Let 0 ≤ wt1 < wt2 <
. . . < wtt ≤ Λ be the sorted list of distinct weight values in G. Then t ≤ |E| < n2. We can do a binary
search on the list of weights to find i such that cwti ≥ k and cwti−1 < k. (For notational convenience, let
cwt0 = 0.) Then maxS⊂V wk(S) = wti. To see this, note that cwti ≥ k implies that all cuts in G have at
least k edges of weight ≤ wti, i.e., wk(S) ≤ wti for all cuts S in G. On the other hand, cwti−1 < k implies
that some cut S in G has < k edges of weight ≤ wti−1. Thus, wk(S) = wti for this cut S. It follows that
maxS⊂V wk(S) = wti. If cwt < k then some cut in G has < k edges. In this case, we set maxS⊂V wk(S)
to Λ. (Recall that for computing the sensitivity of fmin(x1, . . . , xn) we used the convention xi = Λ for
i > n.) To summarize, maxS⊂V wk(S) can be computed with O(log t) min-cut computations on Gwti’s.

Let T be a MST of G. An (i, j)-cut of G is a cut S such that i ∈ S and j ∈ V/S.

max
S⊂V

(wt(S)− w1(S)) = max
e∈T

max
e-cuts S

(wt(S)− w(e)) = max
e∈T

( max
e-cuts S

wt(S)− w(e)).

We can compute max
e-cuts S

wt(S) the same way as max
S⊂V

wk(S), using calls to a procedure that computes the

minimum cut separating a given pair of nodes instead of a general minimum cut.

3.3.1 Analyzing the Sensitivity of the MST: Proof of Lemma 3.7

We first analyze the local sensitivity of the MST:

Lemma 3.9. [3.7a] The local sensitivity LSfMST(G) = max
S⊂V

LSfmin

(
w1(S), w2(S), . . . , wa(S)(S)

)
.

The lemma follows from Claims 3.10 and 3.11, which give upper and lower bounds, respectively, on the
local sensitivity of fMST, and the fact that LSfmin

(x) = max(x1, x2 − x1), which was shown in the proof
of Claim 3.6.

Claim 3.10. LSfMST(G) ≤ max(w1(S), w2(S)− w1(S)) for some S ⊂ V .

Proof. Let e = (i, j) be an edge such that changing the weight of e from w to w′ maximizes the change in
fMST. Let f = fMST(G) and f ′ = fMST(G′) where G′ is G with w(e) changed to w′. We will consider two
cases: w < w′ and w > w′. In the first case, we will show that f ′ − f ≤ w2(S)− w1(S) for some S ⊂ V .
In the second case, that f − f ′ ≤ w1(S) for some S ⊂ V .

Case 1: w < w′. Observe that when the weight of e is increased, fMST can increase only if e is in all
MSTs of G. Let T be a MST of G. Removing e from T breaks it into two connected components. Let S be
the nodes of the connected component containing i. By a standard argument (see, e.g., [19]), w = w1(S),
since e is the only edge in T crossing the cut S. (Otherwise, one can replace it with a lighter edge crossing S
to get a lighter MST for G.) Let T ′ be a graph obtained from T by replacing e with e2(S). T ′ is a spanning
tree of G because it has n − 1 edges and is connected. Its cost in G is f + w2(S) − w1(S). Since T ′ does
not contain e, it has the same cost in G′. Therefore, f ′ ≤ f + w2(S)− w1(S), as required.

Case 2: w > w′. Similarly, when the weight of e is decreased, fMST can decrease only if e is in all
MSTs of G′. Let T be a MST of G′. Define S as in the previous paragraph. T is a spanning tree in G with
cost f ′+w−w′. Thus, f ≤ f ′+w−w′. If w = w1(S) (where the weights are ordered according to G, not
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G′) then f − f ′ ≤ w1(S), as required. Otherwise (i.e., if w is not the lightest weight in the cut S), consider
the graph T ′ obtained from T by replacing e with e1(S). As before, T ′ is a spanning tree of G. Its cost is
f ′ + w1(S)− w′. Thus, f ≤ f ′ + w1(S)− w′ ≤ f ′ + w1(S), as required.

Claim 3.11. LSfMST(G) ≥ max(w1(S), w2(S)− w1(S)) for all S ⊂ V .

Proof. Consider some S ⊂ V. We will show how to change one weight in G in order to (a) decrease fMST
by w1(S); (b) increase fMST by w2(S)−w1(S). Let T be a MST of G. By a standard argument, T contains
an edge e = (i, j) with i ∈ S, j ∈ V/S and w(e) = w1(S).

(a) Let G′ be a graph obtained from G by setting w(e) to 0. T is a spanning tree in G′ of weight
f − w1(S). Thus, fMST(G′) ≤ f − w1(S), and therefore SfMST(G) ≥ w1(S).

(b) Let G′ be a graph obtained from G by setting w(e) to w2(S). Let f ′ = fMST(G′). Suppose
for contradiction that f ′ < f + w2(S) − w1(S), namely, that some spanning tree T in G′ has cost <
f + w2(S)− w1(S). To reach a contradiction, we will show that G has a spanning tree of cost < f . There
are two cases to consider: e ∈ T and e /∈ T . If e ∈ T then T is a spanning tree in G of cost < f , and we
are done. Suppose e /∈ T . Recall that e = (i, j). There is a unique path from i to j in T . Let e′ = (i′, j′)
be the first edge on the path with i′ ∈ S and j′ ∈ V/S. Let T be the graph obtained from T by replacing
e′ with e. This graph is a spanning tree. Its cost in G is < f , a contradiction. It concludes the proof that
SfMST(G) ≥ w2(S)− w1(S).

Lemma 3.9 expresses the local sensitivity of fMST as the maximum of the local sensitivities of minimum
functions. The next lemma gives an analogous statement for the local sensitivity at distance k. The lemma
will be crucial for computing the smooth sensitivity of fMST.

Lemma 3.12 (Lemma 3.7 restated). The local sensitivity at distance k is

A
(k)
fMST

(G) = max
S⊂V

A
(k)
fmin

(
w1(S), w2(S), . . . , w`(S)(S)

)
.

Proof. Recall that wt(S) denotes the weight of the t-th lightest edge in the cut S. For this proof, we will
make the notation more specific: wGt (S) will be the weight of the t-th lightest edge in the cut S according
to the weights of G.

A
(k)
fMST

(G)

= max
G′:d(G,G′)≤k

LSfMST(G′)

= max
G′:d(G,G′)≤k

(
max
S⊂V

LSfmin

(
wG

′
1 (S), . . . , wG

′

`(S)(S)
))

= max
S⊂V

(
max

G′:d(G,G′)≤k
LSfmin

(
wG

′
1 (S), . . . , wG

′

`(S)(S)
))

= max
S⊂V

A
(k)
fmin

(
wG1 (S), . . . , wG`(S)(S)

)
.

The equalities follow from Definitions 1.6 and 3.1 and Lemma 3.9.

By the proof of Claim 3.6, A(k)
fmin

(w1, . . . , wt) = max(wk+1, wk+2 − w1). Substituting this into the

expression for A(k)
fMST

(G) in Lemma 3.12 and exchanging the order of the maxima, we get

A
(k)
fMST

(G) = max

(
max
S⊂V

wk+1(S),max
S⊂V

(wk+2(S)− w1(S))

)
. (4)
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3.4 Smooth Sensitivity of the Number of Triangles in a Graph

In this subsection, we explain how to compute the smooth sensitivity of the function that counts the number
of triangles in a graph. Consider an undirected graph on n nodes, represented by an adjacency matrix3 x,
where each entry xij is reported to the database by an individual. Since xij = xji∀i, j ∈ [n], we let the
Hamming distance between adjacency matrices x and x′ be the number of entries with i ≥ j on which they
differ. Let f4(x) be the number of triangles in the graph represented by x.

Observe that by adding or deleting an edge (i, j), we add or delete all triangles of the form (i, k, j)
for all k ∈ [n]. Let aij represent the number of triangles involving a potential edge (i, j): that is, aij =∑

k∈[n] xik · xkj . Similarly, let bij be the number of half-built triangles involving a potential edge (i, j):
bij =

∑
k∈[n] xik ⊕ xkj . With this notation, LSf4(x) = maxi,j∈[n] aij . In contrast, GSf4 = n− 2.

Claim 3.13. The local sensitivity of f4 at distance s is

A(s)(x) = max
i 6=j;i,j∈[n]

cij(s) where cij(s) = min

(
aij +

⌊
s+ min(s, bij)

2

⌋
, n− 2

)
.

Proof. First we show that A(s)(x) ≥ cij for all i, j ∈ [n]. Fix distinct i, j ∈ [n]. Let y be the adjacency
matrix for the graph represented by xwith the following s additional edges: (1) for min(bij , s) indices k with

xik 6= xjk, add the missing edge (i, k) or (j, k); (2) if s > bij , for
⌊
s−bij

2

⌋
indices k with xik = xjk = 0,

add edges (i, k) and (j, k). Let y′ be the same as y with one exception: set y′ij = y′ji to 1 − yij . Then
d(x, y) ≤ s, d(y, y′) = 1, and |f4(y)− f4(y′)| = cij(s). Thus, A(s)(x) ≥ cij .

Now we prove that A(s)(x) ≤ cij for some i, j ∈ [n]. Let y, y′ be the adjacency matrices such that
d(x, y) ≤ s, d(y, y′) = 1 and A(s)(x) = |f4(y) − f4(y′)|. Let (i, j) be an edge on which y and y′ differ.
Then A(s)(x) ≤ cij because graphs represented by y and y′ only differ on triangles involving edge (i, j).

There are aij such potential triangles in x, and one can add at most
⌊
s+min(s,bij)

2

⌋
such potential triangles

by adding at most s edges.

Claim 3.14. The ε-smooth sensitivity of f4 is computable in time O(M(n)), where M(n) is the time
required for multiplying two matrices of size n× n.

Proof. Observe that aij = (x2)ij and bij = degree(i) + degree(j) − 2aij − 2xij . Thus, both aij and
bij for all i, j ∈ [n] can be computed in time O(M(n)). From these values, one can compute A(k)(x) for
k = 0, . . . , n in time O(n2 log n) as follows. Sort pairs (aij , bij) so that aijs are non-decreasing. If there
are several pairs with the same aij , keep only the pair with the largest bij . Go through the list in the order
of increasing aij and for each (a, b), keep this pair only if 2a− b > 2a′ − b′ for the previous surviving pair
(a′, b′). Call the surviving pairs (a1, b1), . . . , (at, bt). Let s0 = 0, si = 2(ai− ai+1) + bi for i ∈ [t− 1], and
st = 2(n− 2− at)− bt + 1. Then A(s)(x) = ai +

⌊
s+min(s,bi)

2

⌋
if s ∈ [si−1, si).

To compare the noise magnitude S∗f4,ε with
GSf4
ε = n

ε , the noise magnitude obtained from the global
sensitivity framework, we will look at how much noise we are adding in random graphs. In one commonly
studied random graph model, G(n, p), a graph on n vertices is obtained by independently including an edge
between each pair of vertices with probability p.

Under G(n, p), for each (i, j) the distribution of aij is Binomial(n− 1, p2) and the distribution of bij is
Binomial(n− 1, 2p(1− p)). Thus, with high probability, aij ≤ O(np2 log n) and bij ≤ O(np log n) for all

3What follows can be easily changed to deal with adjacency lists representation.
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i, j. That is, cij(s) ≤ s + O(np2 log n) for all i, j. Therefore, with high probability N∗f,ε ≤
1
ε maxs((s +

O(np2 log n))e−εs). As long as 1/ε is less than np2 log n, this expression is maximized for s = 1, yielding
S∗f,ε = O(np

2 logn
ε ).

3.5 Computing Local Sensitivity is Hard for Some Functions

One can construct instances whereLSf (x) and S∗(x) are difficult to compute or even approximate. Suppose
that D = {0, 1}n and we have a function f : Dn → {0, 1} defined as follows: f(x) = φx2,...,xn(x1), where
φx2,...,xn is a boolean formula defined by x2, ..., xn. Specifically, if x2 = · · · = xn, and x2 is the binary
description of some formula over n variables, then let φx2,...,xn be that formula. Otherwise, set φx2,...,xn ≡ 0.
(To see why an n-bit string can describe a formula over n variables, imagine that it is restricted to formulas
which depend only on, say, the first n1/3 bits.) If φx2,...,xn is satisfiable, then the local sensitivity and S∗(x)
are 1. Otherwise, the local sensitivity is 0 and S∗(x) = exp(−βn).

4 Sample-Aggregate Framework

4.1 A Motivating Example: Clustering

One motivating example for the sample and aggregate framework is privately releasing k-means cluster
centers. In k-squared-error-distortion (k-SED) clustering (also called “k-means”), the input is a set of
points x1, ..., xn ∈ R` and the output is a set of k centers c1, ..., ck with minimum cost. The cost of a set of
centers is the sum over i of the squared Euclidean distance between xi and the nearest center:

costx(c1, ..., ck) = 1
n

n∑
i=1

min
j
‖xi − cj‖22 .

Let fcc denote a deterministic function which takes a data set x and outputs a set of cluster centers. It
is convenient to think of fcc as producing optimal centers, although in general the output may only be
approximately optimal.
Wasserstein Distance. To apply the sensitivity framework to clustering, we have to be able to compute
distances between sets of cluster centers. To this end, we equip the output space of a clustering algorithm,
M =

(
R`
)k, with a meaningful metric. L`k2 is not appropriate, since under this metric, two permutations

of the same set of centers can be very far apart. Instead, we use a variant of the earthmover metric, called
the Wasserstein distance [30]. Given two sets of candidate centers, we take the L`k2 distance under the best
possible permutation of the centers in each set, that is:

dW
(
{c1, ..., ck} , {ĉ1, ..., ĉk}

)
=
(

min
π∈Sk

k∑
j=1

‖cj − ĉπ(j)‖22
) 1

2
.

It is easy to verify that this defines a metric modulo the equivalence between permutations of the same
multi-set. (We ignore the technicality and call the resulting structureM a metric space). One can compute
the Wasserstein distance dW efficiently: Given two sets of centers, find the minimum weight perfect match-
ing in the balanced bipartite graph on 2k vertices, where the weight of edge (i, j) is given by ‖ci − ĉj‖22
(that is, the minimum weight perfect matching describes the optimal permutation in the distance definition),
and take the square root of the result. Several variants on this definition would work well for our purposes;
we use Wasserstein’s for convenience.
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Adding Noise with respect to Earthmover-like Metrics For the purposes of adding noise to point-sets
in Rd (i.e., points inM), we sample the output by first permuting the point set randomly, and then adding
Gaussian noise, as in Lemma 2.10. This amounts to treatingM asLdk modulo the equivalence class induced
by permuting the k pieces of dimension d randomly. If S is a smooth upper bound to the local sensitivity
of f : Dn → M (where sensitivity is measured w.r.t the Wasserstein metric on M), then one can add
noise with standard deviation S(x) log(1/δ)

β to each coordinate of f(x) and obtain an (ε, δ)-differentially
private mechanism. This follows essentially from the fact that L2 distance is always an upper bound on the
Wasserstein metric.
Sensitivity of Clustering. Let fcc(x) denote the k-SED cluster centers, where xi are points from a subset of
R` with diameter Λ. (If the set of optimal cluster centers is not unique, fcc(x) outputs the lexicographically
first set of centers.) The cost of the optimal clustering has global sensitivity at most Λ/n, since moving
one point changes its distance to the closest center by at most Λ. The global sensitivity of fcc is much
higher: Ω(Λ). For example, in the instance depicted in Fig. 2, changing a single point moves the two
optimal centers by Ω(Λ). Thus, adding noise to fcc(x) according to the global sensitivity essentially erases
all centers completely. In contrast, intuition suggests that in “well-clustered” instances (where there is a
single reasonable clustering of the data), the local sensitivity should be low since moving a few data points
should not change the centers significantly. However, we do not know how to approximate a smooth bound
on LSfcc efficiently.

We circumvent this difficulty by relying on a different intuition: in well-clustered instances, random
samples from the data should have approximately the same centers as the original data set, and this can be
verified efficiently. This section describes a framework for releasing functions which fit this intuition. The
application to fcc appears in Section 5.

Move 1 point

Figure 2: A sensitive 2-SED instance

4.2 Basic Framework

In this section we define the sample and aggregate framework and state the main theorem on its performance.
In what follows, unless specified otherwise,M denotes a metric space with distance function dM(·, ·) and
diameter Λ.

Suppose that f is defined on databases of all sizes, so that it makes sense to apply f to a random sample
of the data points. Further, suppose that for a particular input x ∈ Dn, the function value f(x) can be
approximated well by evaluating f on a random sample of o(n) points from the database. We prove below
that in such cases one can release the value f(x) with relatively small expected error.

Sample and aggregate works by replacing f with a related function f̄ for which smooth sensitivity is low
and efficiently computable. The first step in the framework can be thought of as randomly partitioning the
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database x into m small databases, where m is a parameter in the construction. To simplify the analysis, we
construct the small databases by taking independent random samples from x instead of actually partitioning
x. LetU1, ..., Um be random subsets of size n/m independently selected from {1, . . . , n}. Each subset is ob-
tained by taking uniform random samples without replacement. Let x|U denote the subset of x with indices
in U . We evaluate f on m small databases x|U1 , . . . , x|Um to obtain values z1, ..., zm in the output space of
f . Finally, we apply a carefully chosen aggregation function g, called the center of attention and defined in
Section 4.4, to the values z1, ..., zm. The output of this computation, f̄(x) = g (f(x|U1), . . . , f(x|Um)) , is
released using the smooth sensitivity framework (Figure 3).

x

x
∣∣
Um

x
∣∣
U1

x
∣∣
U2

...
f

g +aggregation function

Noise calibrated 
to smooth 
sensitivity off f

z1
z2 zm

A(x)

g

f̄(x)

Figure 3: The Sample-Aggregate Framework

We will bound the smooth sensitivity of the function f̄ at x by the smooth sensitivity of the aggregation
function g at z = (z1, ..., zm). The idea is that changing a single point in the original database x will change
very few small databases, and hence very few evaluations z1, . . . , zm. This requires a slight generalization
of local sensitivity and related notions to handle more than one change to the input.

The bulk of the work in the analysis of the sample and aggregate framework is in carefully choosing the
aggregation function so that (a) if most of the zi’s are close to some point, then f̄(x) is close to that point,
and we can efficiently compute a smooth, fairly tight upper bound on the local sensitivity of f̄ .

Sample and aggregate outputs accurate answers on databases x on which f(x) is approximated well by
evaluating f on random samples from the database. The following definition quantifies what we mean by a
good approximation.

Definition 4.1. A function f : D∗ →M is approximated to within accuracy r on the input x using samples
of size n′ if Pr

U⊂[n],

|U|=n′

[
dM

(
f(x|U ), f(x)

)
≤ r
]
≥ 3

4 .

For example, for the clustering application, this definition says that with probability 3/4, the cluster
centers of a small random sample from the database are within the Wasserstein distance r from the centers
of the whole database.

Sample and aggregate is applicable for a function with any output space metricM for which there is an
admissible noise process (see Definition 2.5). The performance of the framework depends on the parameters
of the noise process. We summarize the performance of sample and aggregate for the case ofM = L1 in
Theorem 4.2. The corresponding statements for L2 and various versions of the Wasserstein distance have
more parameters, but are similar. Further below, we develop machinery for general metrics that, combined
with results on adding noise from Section 2, yields a proof of Theorem 4.2 and its analogues for other metric
spaces.

Theorem 4.2 (Main). Let f : D∗ → Rd be an efficiently computable function with range of diameter Λ
and L1 metric on the output space. Set ε > 2d√

m
and m = ω(log2 n). The sample-aggregate mechanism

A is an ε-differentially private efficient mechanism. Moreover, if f is approximated within accuracy r on
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the database x = (x1, . . . , xn) using samples of size n
m , then each coordinate of the random variable

A(x)− f(x) has expected magnitude O
(
r
ε

)
+ Λ

ε e
−Ω( ε

√
m
d

).

This result captures the intuition that if a function f can be approximated by sampling on a particular
input x, then we can release f(x) with small additive error. In the special case where ε is constant, we get
the following:

Corollary 4.3. Suppose ε is constant. If f is approximated within accuracy r on input x using samples of
size o

(
n

d2 log2 n

)
, then A releases f(x) with expected error O(r) + Λ · negl

(
n
d

)
in each coordinate.

The notation negl() above denotes a negligible function, that is a positive function g(x) that is asymp-
totically smaller than any inverse polynomial as x tends to infinity: g(x) = 1/xω(1).

In many natural settings where privacy is important, the database itself consists of a random sample
taken from some underlying population. In that case, one can think of f(x) as an approximation to some
statistics about the population on a sample of size n. Corollary 4.3 states that privacy imposes only a slight
degradation of the quality of the results: the server answers queries with accuracy corresponding so a sample
of size Ω̃(n/d2) while ensuring privacy.

Remark 1. A variant of Theorem 4.2 still holds if in Definition 4.1, the values f(x|U ) lie near some specific
value c, not necessarily f(x) (that is, assume that dM

(
f(x|U ), c

)
≤ r with probability at least 3/4). In

that case, the analogous statement is that A(x) − c has expected magnitude O
(
r
ε

)
+ Λ

ε e
−Ω( ε

√
m
d

) in each
coordinate.

This generality will be useful for both applications of sample and aggregate discussed in Section 5.
For example, for k-SED clustering, the function f evaluated on each sample x|U will be a polynomial-time
algorithm which outputs a set of cluster centers of near-optimal cost. In contrast, the value c is the set of
optimal cluster centers, c = fcc(x), which is NP -hard to compute.

4.3 Good Aggregations for General Metric Spaces

Good Aggregations. Before defining a valid aggregation, we generalize local sensitivity and related notions
to handle several changes to the input. It is not hard to prove that in the sample and aggregate framework, if
we independently select m small databases of size n/m (each chosen uniformly without replacement), then
with probability at least 1 − 2−

√
m+logn, no point appears in more than

√
m small databases. Hence, with

high probability, each point in x affects at most
√
m of the inputs to g. This observation leads us to a slight

generalization of local sensitivity and smooth bounds, where we consider how changing up to s points in
the input affects the output. For the application to sample and aggregate, we will set s to

√
m.

Definition 4.4. For g : Dm →M and z ∈ Dm, the local sensitivity of g at x with step size s is

LS(s)
g (z) = max

z′:d(z,z′)≤s
dM

(
g(z), g(z′)

)
.

For β > 0, a function S : Dm → R+ is a β-smooth upper bound on the sensitivity of g with step size s if

∀z ∈ Dm : S(z) ≥ LS(s)
g (z) ;

∀z, z′ ∈ Dm , d(z, z′) ≤ s : S(z) ≤ eβS(z′) .
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An aggregation function g comes with a corresponding smooth upper bound S on its sensitivity with
step size s. When most of the input to g is contained in a small ball, (a) the output of g should be close to
the ball and (b) S should be small. Let B(c, r) denote a ball around c of radius r.

Definition 4.5 (Good Aggregation). In a metric spaceM with diameter Λ, an (m,β, s)-aggregation is a
pair of functions, an aggregation function g : Mm →M and a sensitivity function S : Mm → R+, such
that

1. S is a β-smooth upper bound on LS(s)
g .

2. If at least 2m
3 entries in z are in some ball B(c, r) then

(a) g(z) ∈ B(c,O(r)) ;

(b) S(z) = O(r) + Λ · e−Ω(βm/s) .

If g and S are computable in time poly(m, 1/β), the aggregation is efficient.

Intuitively, the existence of a good aggregation implies that given a collection of points, most of which
are contained in a small ball, it is possible to return a representative point that is not far from the ball, while
preserving privacy. This ensures that the sample and aggregate mechanism returns a value f̄(x) close to
f(x) when at least 2/3 of the values zi = f(x|Ui) lie close to f(x). Condition (2b) ensures that not too
much noise is added to f̄(x).

Example 2. When f takes values in [0,Λ] ⊆ R, the median is an efficient good aggregation in the sense
of Definition 4.5. To see why, note that if 2/3 of the points in z are in an interval B of length 2r, then the
median is also contained in this interval. Condition (2a) is hence satisfied as the median is within distance r
from the center of B.

S(z) = max
k=0,...,n/6

LS(s(k+1))
g (z) · e−βk is a β-smooth bound on LS(s)

g for any function g. When g is the

median, LS(s)
med is efficiently computable, using formulas similar to those in Section 3.1, and so S is also

efficiently computable.
For Condition (2b), note that if 2/3 of the points lie in B, the term LS

(s(k+1))
med (z) is at most 2r for

k = 0, ..., m−1
6s (if fewer than m/6 points get moved, the median is constrained to remain in B). For larger

k, we bound LS(s(k+1))
med (z) from above by the diameter Λ. Thus, S(z) ≤ 2r + Λ · e−

βm
6s when 2/3 of the

inputs lie in B. ♦

In general metric spaces, one can define a median to be a point minimizing the sum of the distances to
all points in a dataset. This satisfies condition (2a) in any space. However, this median may be difficult to
compute (it is NP-hard in, for example, permutation spaces [2]). Moreover, we must find a smooth bound on
its local sensitivity. We propose an efficient aggregation that meets Definition 4.5 for arbitrary metric spaces
(as long as computing pairwise distances is feasible). Our aggregator, the center-of-attention, is related to
the median and is defined and discussed in Section 4.4.

4.4 The Center of Attention is a Good Aggregation

To prove Theorem 4.2, we propose an aggregation function computable in any metric space, called the
center of attention. It depends only on pairwise distances between the points of the dataset. We start by
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defining a simpler unconstrained center of attention, a good aggregation related to the center of attention,
which might not be efficient in some metric spaces.

Let the input to the aggregation be a set z ⊆ M of m points in the metric spaceM. For every point
c ∈ M (not necessarily in z) define r(c, t) to be its t-radius with respect to z, i.e., the distance from c to its
t-th nearest neighbor in z (for t > m, set r(c, t) = Λ). Our aggregation is based on minimizing the t-radius
for different values of t. Adding noise proportional to the t-radius was used very differently, but also in
the context of data privacy, by Chawla et al. [7]. We are not aware of a direct connection between the two
techniques.

4.4.1 A Good But Inefficient Aggregation

Our first aggregation is good for any metric spaceM, but it might not be efficiently computable in some
spaces.

Definition 4.6. The unconstrained center of attention, g0(z), of the set z ∈ Mm is a point inM with the
minimum t0-radius, where t0 = (m+s

2 + 1).

In the metric spaces we consider, namely, finite spaces, Lp metrics, and variants of Wasserstein, the
unconstrained center of attention always exists (by compactness), though it may not be unique. One can
make g0 a function by choosing an arbitrary minimizer for each z. Consider the ball of the minimum t0-
radius centered at g0(z). The number t0 is chosen so that when s points are removed from z, a majority of
the remaining points is contained inside the ball. This lets us bound LS(s)

g0 .
Let r(z)(t) be the minimum t-radius of any point inM, i.e., the minimum over c ∈ M of r(c, t). We

define the sensitivity function corresponding to g0 as

S0(z)
def
= 2 max

k≥0

(
r(z) (t0 + (k + 1)s) e−βk

)
.

Ignoring efficiency, the pair (g0, S0) is a good aggregation.

Claim 4.7. The pair (g0, S0) is an (m,β, s)-aggregation in any metric.

Proof. First note that for any two sets z and z′ differing in at most s points, every ball which contains t+ s
points in z′ must also contain t points in z. Hence,

r(z)(t) ≤ r(z′)(t+ s) . (5)

Now consider LS(s)
g0 (z). Suppose the set z′ differs from z in s points, and consider (a) the ball of

radius r(z′)(t0) centered at g0(z′) and (b) the ball of radius r(z)(t0) centered at g0(z). Note that t0 was
chosen so that both balls contain a strict majority of the points in z ∩ z′. Thus, they intersect in at least one
point. The distance d(g0(z), g0(z′)) is at most r(z)(t0) + r(z′)(t0). By Eq. (5), this is bounded above by
r(z)(t0) + r(z)(t0 + s) ≤ 2r(z)(t0 + s). This yields:

LS(s)
g0 (z) ≤ 2r(z)(t0 + s).

As right hand side above is the first term in the maximum defining S0(z), we get that S0 bounds the local
sensitivity correctly. The smoothness of S0 follows from Eq. (5):

S0(z) ≤ 2 max
k≥0

(
r(z′) (t0 + (k + 2)s) e−βk

)
= 2(eβ) max

k′≥1

(
r(z′)

(
t0 + (k′ + 1)s

)
e−βk

′
)

= eβS0(z′).
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It remains to prove that when the set z is concentrated in a ball of radius r, then g0(z) is close to the ball
and S0(z) is close to O(r) (properties 2a and 2b from Definition 4.5). Suppose that 2m

3 of the inputs lie in
B(c, r). Then radii r(z)(t) are at most r for all t ≤ 2m

3 .
Property 2a: The ball of radius r(z)(t0) which defines g0(z), must intersect with B(c, r) in at least one

database point. The centers can be at distance at most 2r, and so g0(z) ∈ B(c, 2r).
Property 2b: In the maximum defining S0(z), the first m

6s terms are at most r, and the remaining ones

are at most Λ. Therefore, S0(z) ≤ 2 max
(
r , Λ · e−

βm
6s

)
, which satisfies the requirements of a good

aggregation.

4.4.2 An Efficient Aggregation: the Center of Attention

To get an efficient aggregation, we “approximate” the unconstrained center of attention with the best point in
the input z. Recall that the unconstrained center of attention of the set z is a point inM with the minimum
t0-radius.

Definition 4.8. The center of attention, g(z), of the set z ∈Mm is a point in z with the minimum t0-radius,
where t0 = (m+s

2 + 1).

Recall that r(c, t) is the t-radius of a point c ∈M. Let r1(t), r2(t), . . . , rm(t) be the sorted {r(c, t)}c∈z
(smallest to largest). We can compute the sorted lists for all t ∈ [m] by computing all pairwise distances
within z (this costs

(
m
2

)
distance computations). It takes O(m2 logm) time to generate the sorted list

r1(t), r2(t), . . . , rm(t).
As with the unrestricted center of attention, LS(s)

g ≤ 2r1(t0 + s). Let a < t0 be a parameter of the
construction. We will later set a ≈ s/β. In order to compute a smooth bound on the sensitivity, define
ρ(t) = 1

a

∑a
i=1 ri(t). This is an upper bound on r1(t), and smooth enough to be used as a measure of noise

magnitude. Let
S(z) = 2 max

k

(
ρ(t0 + (k + 1)s) · e−βk

)
.

Theorem 4.9. Set β > 2s/m. In every metric space with efficiently computable pairwise distances, (g, S)
is an efficient (m,β, s)-aggregation. Computing g(z) and S(z) requires O(m2) distance computations and
O(m2 logm) time.

This theorem, combined with results on adding noise from Section 2, implies the main Theorem 4.2 and
its analogues for other metric spaces.

Proof of Theorem 4.9. We noted above that g, S are computable efficiently from the pairwise distances of
the point set. Consider two point sets z, z′ that differ on s points. Define r′i(t) and ρ′(t) analogously, but for
the set z′.

The following claim is an analogue of (5) in the analysis of the inefficient aggregation. It implies that
S(z)
S(z′) ≤ eβ(1 + s

a). Taking a = ds/βe shows that S is ≈ 2β-smooth. We may choose a that sarge since
β > 2s/m by the hypotheses of the theorem. Also, we may scale β appropriately to get the result we need.

Claim 4.10. For all a < t: ρ(t) ≤ (1 + s
a) · ρ′(t+ s)

Proof. To prove the claim, we will compare the two sorted lists r1(t), ..., ri(t), ..., rm(t) and r′1(t+s), ..., r′j(t+
s), ..., r′m(t+ s). We can define a partial matching between them based on the unchanged points shared by
z and z′: if a point c appears in both databases with indices i and j respectively, then define i = π(j)
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and match the corresponding radii rπ(j)(t) and r′j(t + s). For every pair of matched entries, we have
r′j(t+ s) ≥ rπ(j)(t).

Exactly s entries in each list will be left unmatched (corresponding to the point which was changed).
Let I and J be the set of s unmatched indices in each of the two lists. We consider two cases:

Case 1: Suppose that there are no unmatched elements in the first a terms of the second list r′1(t +
s), ..., r′m(t+ s), that is J ∩ [a] = ∅. Then we can compute a lower bound on the sum ρ′(t+ s) in terms of
a sum of some a elements in the first list, which is itself an upper bound on ρ(t):

ρ′(t+ s) = 1
a

a∑
j=1

r′j(t+ s) ≥ 1
a

a∑
j=1

rπ(j)(t) ≥ 1
a

a∑
i=1

ri(t) = ρ(t)

Case 2: In general, we have to break the sum ρ′(t) into two pieces, according to whether the indices are
in or out of J . We can bound the first sum directly:

1
a

∑
j∈[a]\J

r′j(t+ s) ≥ 1
a

∑
j∈[a]\J

rπ(j)(t) ≥ 1
a

|[a]\J |∑
i=1

ri(t)

Thus we are using the terms in [a] \ J to bound the first |[a] \ J | terms of ρ(t).
It remains to find bounds for the remaining terms. We claim that for all i ≤ a,

ri(t) ≤ 2r′1(t+ s).

To see this, note that there is ball of radius r′1(t + s) containing t + s points from z′, and hence at least t
points from z. Each of these points must have t-radius at most 2r′1(t+ s), by the triangle inequality. Since
i ≤ a < t, we can bound ri(t) ≤ 2r′1(t+ s).

To complete the proof, it is convenient to bound ρ(t) above (instead of bounding ρ′(t+s) below). Again,
we break ρ(t) into two pieces, which corresponds to breaking ρ′(t) according to indices in or out of J .

ρ(t) =
1

a

∑
i∈[a]

ri(t) =
1

a

|[a]\J |∑
i=1

ri(t) +
1

a

a∑
i=|[a]\J |+1

ri(t)

≤ 1

a

∑
j∈[a]\J

r′j(t+ s) +
|[a] ∩ J |

a
(2r′1(t+ s))

Because r′1(t + s) is the smallest term in the average defining ρ′(t + s), we can regroup the terms in last
sum to obtain

ρ(t) ≤ ρ′(t+ s) +
|[a] ∩ J |

a
r′1(t+ s).

Finally, since [a] ∩ J has at most s elements, and r′1(t + s) ≤ ρ′(t + s), this last inequality yields the
desired bound: ρ(t) ≤ (1 + s

a)ρ′(t+ s). This proves Claim 4.10.

The previous claim gave us that S(z) is a smooth upper bound on local sensitivity of g. To complete the
proof that (g, S) form a good aggregation it remains to verify that g, S behave properly when the 2m

3 points
in z lie in a ball B(c, r). This is is very similar to the analysis of g0, S0 above: When i < t < 2m

3 , the ith
t-radius must be small: ri(t) ≤ 2r.

Property 2a: The balls B(c, r) and B(g(z), 2r) each contain more thanm/2 points, and so they intersect.
Thus g(z) ∈ B(c, 3r).

25



Property 2b: There are 3m
6s terms in the maximum defining S(z) that are at most r, since ρ(t) ≤ ra(t) ≤

rt(t) ≤ r for t ≤ 2m
3 . Each of the other terms is at most Λ, and hence:

S(z) ≤ 2 max
{

2r, Λ · e−β(
m
6 −2)

}
assuming the underlying space has diameter at most Λ. This completes the proof of Theorem 4.9.

Remark 2. One can show that a variation on S can be used as a smooth upper bound on the sensitivity of
the median in general metric spaces, and also to bound the sensitivity of the standard 2-approximation to
the median, given by taking the point in the data set with the minimum sum of distances to other points.
However, when used to prove Theorem 4.9 these functions are more complicated to analyze and yield worse
constants.

4.5 Using a Good Aggregation: Proof of Theorem 4.2

Suppose we are given f, f ′ as in the theorem. We can instantiate the sample and aggregate framework as
follows, assuming m ≥ log2 n and n sufficiently large (n > 35):

1. Select m random subsets of size n/m, independently and uniformly at random.

2. If any index i ∈ [n] appears in more than
√
m of the sets, then reject the sets and repeat Step 1.

By Lemma 4.11 below, this step is executed at most 1/(1 − 2n
(
√
m)!

) times in expectation. Because
√
m! ≈ nO(ln lnn), this expected time is polynomial in n (and at most 2 for n great than 35).

3. Let z = (f ′(x|U1), ..., f ′(x|Um)) ∈ Dm. Output g(z) with noise scaled according to Sβ,g(z), where
g, S are the aggregation of Theorem 4.9 computed with respect to the L1 metric.

To prove Theorem 4.2, we must show that this algorithm is a valid privacy mechanism. Each collection
of sets U1, ..., Um defines a function f̃(x) = g (f ′(x|U1), ..., f ′(x|Um)). S is a smooth upper bound on
the local sensitivity of f̃ since it is a smooth bound with step size s for g: each change in x corresponds
to changing at most s points in the input to g. In other words, S(z), viewed as a function of x, satisfies
Definition 2.1.

We now turn to bounding the noise added to f(x). Under the conditions of Theorem 4.2, each of the
computed samples within distance r of f(x) with probability at least 3

4 . Suppose the sets U1, ..., Um were
chosen without the added check in Step 2. By a Chernoff bound, with probability 1 − exp(Ωm), at least 2

3
of the elements in z would be contained in the ball of radius r centered at f(x). The added conditioning due
to Step 2 can change this probability by at most 2n/

√
m! = n/e−Ω(

√
m), so overall the probability that 2

3 of
the elements lie in a ball of radius r about f(x) is 1− n/e−Ω(

√
m).

Conditioned on that event, we can apply the properties of the g, S, with s =
√
m. They ensure that we

add noise of standard deviationO( rε )+ Λ
ε e
−Ω(β

√
m) (where β = Θ(ε/d)) in each coordinate, to a center g(z)

that is within distanceO(r) of f(x). This bias — the difference between f(x) and g(z) — is at mostO(r/ε)

for ε < 1. The expected deviation in each coordinate from f(x) is thus on the order of r
ε + Λ

ε e
−Ω(ε
√
m/d),

as desired. This completes the proof of Theorem 4.2.

Lemma 4.11. Suppose U1, ..., Um ⊂ [n] are chosen uniformly and independently from among sets of size
n/m. Then the probability that all points i ∈ [n] are contained in fewer than s ≥ 1 sets is at least 1−2n/s!.
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Proof. For any given point i ∈ [n], the number of sets containing it is distributed asBin(m, 1
m). For s ≤ m,

the probability that i is included in s or more sets is
∑

j≥s
(
m
s

)
(1− 1

m)n−j( 1
m)j ≤

∑
j≥s 1/(j!). For s ≥ 1,

this sequence decreases by a factor of more than 2 at each term, so the sum is bounded by 2/s!. The claim
follows by a union bound over all i.

5 Applying the Sample-Aggregate Framework

We illustrate the sample and aggregate framework via two closely related applications: k-SED clustering
(also called k-means), discussed in Section 4.1, and learning mixtures of spherical Gaussians. In the case
of clustering, we show that instances which are well clustered according to a criterion of [25] behave well
with respect to sampling. In the case of learning, we show that polynomially-many i.i.d. samples allow one
to release the mixture parameters accurately as long as the components of the mixture do not overlap too
heavily.

5.1 Clustering Well-Separated Datasets

Recall that fcc(x), defined in Section 4.1, denotes the k-SED cluster centers, where xi are points from a
subset of R` with diameter Λ. Recall that GSfcc is high and LSfcc appears difficult to compute or even ap-
proximate (though proving that the computation is hard is an open problem). We circumvent these difficul-
ties by using the sample and aggregate framework to release relatively accurate answers on “well-clustered”
instances. Ostrovsky et al. [25] introduced a measure of quality of k-SED instances called separation. They
prove that if x is well-separated, then all near-optimal k-SED clusterings of x induce similar partitions of the
points of x. They use this to show that well-separated data sets are amenable to heuristics based on Lloyd’s
algorithm. We prove that sample and aggregate performs well under similar conditions. In this abstract, we
outline the main ideas.

Definition 5.1 (Separation, [25]). Given a dataset x, let ∆2
k(x) be the cost of the optimal k-SED clustering

of x. We say x is φ2-separated if ∆2
k ≤ φ2∆2

k−1.

An immediate concern is that φ2-separation discusses the cost of the optimal solution to the clustering
problem. It is NP-hard, in general, to find the optimal clustering of a data set but there exist efficient
O(1) approximation algorithms (e.g., [23]). Let f be an A-approximation algorithm that outputs cluster
centers of near optimal cost, for some constant A. The sample and aggregate mechanism cannot evaluate
fcc efficiently, but f is a reasonable query to the server. Recall that to compare two sets of cluster centers
we use the Wasserstein distance, dW, defined in Section 4.1. The following lemma states that for a well-
separated instance x, distance dW

(
f(x|U ), fcc(x)

)
is small with probability 3

4 over the choice of a random
subset U of size n/m.

Lemma 5.2. For some constantsC1, C2, if x ∈ (R`)n is φ2-separated, where n′ > C2( Λ2

∆2
k−1

)2A2k` ln
(
`Λ2

∆2
k−1

)
and φ2 < C1

A+1 , then

Pr
U⊂[n],

|U|=n′

[
dM

(
f̂cc(x|U ), fcc(x)

)
≤ 60Λφ2

√
k
]
≥ 3

4 .

The variant of Theorem 4.2 corresponding to Wasserstein distance, together with this lemma, implies
that the sample and aggregate mechanism will release a clustering of x with additive noise of magnitude
O(Λφ2

√
k/ε) in each coordinate. We conjecture that the actual noise is much lower, but proving the con-

jecture seems to require a much more refined understanding of the clustering problem.
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5.1.1 Proving Lemma 5.2

The intuition behind the proof is that a random sample of the data set will have similar optimal clustering —
up to small additive error, as the original data set, since sampling approximates the cost of each candidate
clustering well. This was proved in [24], although they consider the related k-median problem.

Lemma 5.3 (Mishra et al. [24]). With probability at least 3
4 over random samples U of size at least

O((Λ4dk
γ2

ln(dΛ2

γ )), for all sets of candidate centers c , we have cost(c) = costx|U (c)± γ.

Suppose that all sufficiently good clusterings of a data set x are close to each other. When we apply
sample and aggregate, if n/m is sufficiently large, then most of the samples will have a near-optimal clus-
tering of x as their best clustering, and the mechanism will output a near-optimal clustering. Intuitively,
the existence of an essentially unique optimum clustering is what makes k-means-style clustering problems
meaningful (if there are really many more clusters, as in Fig. 2, then we should use a different value of k).
Following this intuition, the sample and aggregate framework should perform well in many situations. We
formalize this intuition in one particular situation: when the data set satisfies a combinatorial separation
condition [25], under which heuristics perform well.

The analysis below assumes f ′ works with probability 1, but one can easily extend the result to deal with
probabilistic guarantees. Note that even though we were given only an A-approximation algorithm, the final
guarantee relates the output to an optimal clustering. This is due to the separation condition; it guarantees,
in particular, that even approximate solutions are close to the optimum.

We can also use this style of reasoning to show directly that any good approximation algorithm for k-SED
has low smooth sensitivity on well-separated inputs. This should not be surprising, since low local sensitivity
is in some sense necessary for adding little noise. However, the analysis of the sampling framework yields a
qualitatively stronger result: one can apply it some large class of inputs, which include well-separated ones,
but one need not first test whether the input is well-separated. In contrast, a direct bound on S∗ based on
good separation puts the burden on the privacy mechanism to test for good separation, and also to find a
way to degrade quality gracefully as inputs become less well separated. This may well be computationally
harder. More importantly, such a mechanism could only work for well-separated inputs; other classes where
sampling does well (such as those drawn i.i.d. from mixtures with relatively low separation) would be
ignored.

Proof of Lemma 5.2. Let a = 1−401φ2

400 . We show that (a) any clustering with cost less than a∆2
k−1 is close

to the optimal clustering in the Wasserstein distance, and (b) show that with high probability, under the
conditions of the theorem, the output of f ′(x|U ) has cost less than a∆2

k−1.
We start with (b). Under the conditions of the theorem, with probability at least 3/4 a random sample

approximates the cost of every clustering within additive error γ ≈ ∆2
k−1/(A+ 1)

√
C2 (by Lemma 5.3). If

ĉ is the set of centers output by f ′, then costx|U (ĉ) ≤ A costx|U (c∗x), since c∗x costs as much or more than
the cost of the optimal clustering for x|U . On the other hand, costx|U (c∗x) ≤ costx(c∗x) + γ, and so

costx(ĉ) ≤ costxU (ĉ) + γ ≤ A(costx(c∗x) + γ) + γ ≤ Aφ2∆2
k−1 + (A+ 1)γ

Since γ ≈ ∆2
k−1/(A + 1)

√
C2, and φ2A < φ2, we can choose the constant C1 small enough and C2 large

enough so that costx(ĉ) ≤ a∆2
k−1, as needed for part (b).

We now turn to showing that clusterings with low cost are close to the optimal. Every set of centers
ĉ1, ..., ĉk defines a partition of the data set (or index set) based on the Voronoi cells of the centers in Rd.
We write R(ĉi) to denote the corresponding partition of [n] (this depends implicitly on all of ĉ1, ..., ĉk). Let
R∗(i) denote the partition induced by the optimal cluster centers c∗x. We use the following result:
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Lemma 5.4 ([25], Thm 5.1). If x is φ2-separated and costx(ĉ) ≤ a∆2
k−1, then there is a permutation

π : [k]→ [k] such that for each i, the symmetric difference R(ĉi)4R∗(π(i)) has size at most 28φ2R∗(i).

This lemma sets up a matching between centers in ĉ and in c∗. Consider the distance ‖ĉi − c∗i ‖. Since
each is the average of a set of vectors of length at most Λ, we can bound the difference by 28Λφ2(1 +

1
1−28φ2

). Given our setting of φ2, this is at most 60Λφ2. Finally, since each of the k centers may have

this distance from its optimal counterpart, the Wasserstein distance previously defined is at most 60Λφ2
√
k.

This completes the proof of Lemma 5.2.
Note that the proof of Lemma 5.4 in [25] proceeds by bounding the lengths of the vectors ‖ĉi − c∗i ‖. It

is likely that one could improve the constants in this proof by combining the two arguments. As it is, there
are several possible settings of the constants C1, C2 that come out of the proof: one example is C1 = 1

401
and C2 ≈ 1012; another possibility is C1 ≈ 106 and C2 ≈ 106.

Remark 3. Meila [22] defined a different “well-clusteredness” condition, based on the difference between
the semi-definite programming relaxation of k-SED and the integral optimum. That work also shows a
stability condtion similar to Lemma 5.4. It is not clear to us how to compare the approaches of [22,25]. Yet
another condition was proposed by Dasgupta and Schulman [10], based on a goodness of fit test for Gaussian
mixtures. To our knowledge, however, no stability results have been proved based on that condition.

5.2 Learning Mixtures of Gaussians

Consider estimating and releasing the parameters of a uniform mixture of spherical Gaussian distributions.
We say a density function h over R` is a mixture of k spherical Gaussians if we can express it as a convex
combination h(x) =

∑k
i=1

1
kh0(x−µi) where h0 is the density function of a spherical Gaussian distribution

with variance σ2 in each coordinate. The centers µi are the parameters of h (assuming σ2 is known).
Given n i.i.d. samples x1..., xn drawn according to h, our goal is to estimate and release the µi’s as

accurately as possible while protecting the privacy of x = (x1, ..., xn). This is related to, but different from,
the k-SED clustering problem (the optimal k-SED cluster centers form the maximum likelihood estimate
for the µi’s, but the optimal centers are hard to compute exactly and it is not clear that centers with nearly
optimal cost will yield a good estimate of the µi’s).

We apply the sample and aggregate framework. Since the points of x are drawn i.i.d., each of the subsets
x|U1 , ..., x|Um will also consist of i.i.d. samples. Thus, it is sufficient to show that given n/m i.i.d. samples
from h, we can compute a set of centers that is “close” to the real centers. As above, we use the Wasserstein
distance (Sec. 4.1) to measure the distance between different sets of centers. To get a good estimate of the
centers from each of the samples, we use a slight modification of the learning algorithm of Vempala and
Wang [28], whose properties are summarized here:

Lemma 5.5 ([28]). There exists an efficient algorithm which, given n′ samples from a mixture of k spherical
Gaussians, identifies the correct partition of the data points with high probability as long as the distance
between any pair of centers is ω

(
σk1/4 log1/2(`/wmin)

)
, where wmin is the smallest weight in the mixture,

and n′ = `3

wmin
polylog(`).

For larger n′ this lemma may not hold (since the probability of one point going far astray and landing
in the wrong cluster eventually becomes quite high) but one can still get a guarantee on the how far the
estimated centers of the Gaussians will be from the real ones. (The idea is to running the algorithm on
different subsets of the data and combine them to get an estimate of the set of centers.)

29



Lemma 5.6. A modification of the Vempala-Wang clustering algorithm [28], given n′ samples from a mix-

ture of k spherical Gaussians, outputs a set of centers within Wasserstein distance O(σk
√

`
n′ ) of the real

centers, with probability 1−o(1) as long as the distance between any pair of centers is ω
(
σk1/4 log1/2(`k)

)
and n′ ≥ `3k polylog(`).

When n′ = ω
(√

` log(1/δ)
ε log(nkσ )

)
, the sample and aggregate mechanism is (ε, δ)-differentially pri-

vate; it releases a set of centers {µ̂i} where the expected error ‖µ̂i − µi‖ in each of the estimates is

O

(
σ`3/2k log(1/δ)

ε
√
n′

)
. For large n (polynomial in k and `), we get an estimate h′ of the mixture dis-

tribution, which converges to h (that is, the KL-divergence between the distributions tends to 0).
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A Useful Concentration Bounds

We collect here some of the concentration bounds used in the paper. We include proofs for completenes.

Fact A.1. a) If Y is a sum of d exponential random variables, each with expectation 1, then the probability
that Y exceeds y = d + rd is at most exp(−d(r − ln(1 + r))). This is at most exp(−d(r − 1)/2) =
exp(−(y − 2d)/2).

b) If If Y is a sum of d chi-square random variables, each with 1 degree of freedom, then the probability
that Y exceeds y = d + rd is at most exp(−d(r − ln(1 + r))/2). This is at most exp(−d(r − 1)/4) =
exp(−(y − 2d)/4).

Proof of Fact A.1. a) The moment generating function of Y is E(etY ) = (1− t)−d. For any t ∈ (0, 1) and
y > 0, the probability that Y exceeds y is at most (1−t)d

ety (by Markov’s bound). Setting t = 1− y/d, we get
that the probability is at most (yd)de−(y−d). For y = d(1 + r), this reduces to exp(−d(r − ln(1 + r))).

b) The moment generating function of Y is E(etY ) = (1 − 2t)−d/2. For any t ∈ (0, 1) and y > 0, the
probability that Y exceeds y is at most (1−2t)d/2

ety (by Markov’s bound). Setting t = 1
2(1 − d

y ), we get that
the probability is at most (yd)d/2e−(y−d)/2. For y = d(1 + r), this reduces to exp(−d(r − ln(1 + r))/2).

For both parts (a) and (b), the final bound is obtained by noting that r− ln(1 + r) is always greater than
r−1

2 .

Fact A.2. If Y ∼ N(0, 1), then for δ′ < 1/e, we have Pr(Y ≤
√

2 ln(1/δ′)) is at most δ′.

Proof. For any y > 0, we have Pr(N ≥ y) =
∫
x≥y

1√
2π
e−x

2
< 1

y

∫
x≥y

1√
2π
xe−x

2
. This latter integral can

be evaluated exactly; we obtain Pr(N ≥ y) = 1
y
√

2π
e−y

2/2. Now set y =
√

2 ln(1/δ′). Note that y > 1, so

can bound the probability above by e−y
2/2

√
2π

< δ′/2. Similarly, the probability that N < −y is at most δ′/2.
The union of the two events has probability at most δ′.
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