
Lower Bounds for Collusion-Secure Fingerprinting

Chris Peikert∗ abhi shelat∗ Adam Smith∗

MIT Laboratory for Computer Science, Cambridge, MA 02139

Abstract

Collusion-secure fingerprinting codes are an important
primitive used by many digital watermarking schemes
[1, 10, 9]. Boneh and Shaw [3] define a model for
these types of codes and present an explicit construc-
tion. Their code has length O(c3 log(1/ε)) and attains
security against coalitions of size c with ε error. Boneh
and Shaw also present a lower bound of Ω(c log(1/cε))
on the length of any collusion-secure code.

We give new lower bounds on the length of
collusion-secure codes by analyzing a weighted coin-
flipping strategy for the coalition. As an illustration
of our methods, we give a simple proof that the Boneh-
Shaw construction cannot be asymptotically improved.
Next, we prove a general lower bound: no secure code
can have length o(c2 log(1/cε)), which improves the
previous known bound by a factor of c. In partic-
ular, we show that any secure code will have length
Ω(c2 log(1/cε)) as long as log(1/ε) ≥ Kk log c, where K
is a constant and k is the number of columns in the
code (in some sense, a measure of the code’s complex-
ity). Finally, we describe a general paradigm for con-
structing fingerprinting codes which encompasses the
construction of [3], and show that no secure code that
follows this paradigm can have length o(c3

log c log(1/cε))
(again, by showing a lower bound for large values of
ln(1

ε)). This suggests that any attempts at improve-
ment should be directed toward techniques that lie out-
side our paradigm.

1 Introduction

Watermarking has been an effective security tool for
centuries. For example, in the French Decorations scan-
dal of 1887, a paper watermark established that two po-
litical letters supposedly written in 1884 were actually
written on paper manufactured in 1885. These ante-
dated letters created a political scandal which forced
the prime minister to resign. In modern times, water-
marking techniques are being applied to digital docu-

∗Emails: {cpeikert,abhi,asmith}@theory.lcs.mit.edu

ments in order to protect against copyright violations.
In these schemes, a content producer who wishes to dis-
tribute copies of a digital work marks each copy of the
work with a special digital codeword (a fingerprint) and
keeps track of which users receive which codewords. If
a user illegally shares her copy and the distributor finds
this copy, the fingerprint can be extracted from the ob-
ject and used to reliably identify the perpetrator.

There are many aspects to the watermarking prob-
lem, including how to embed the digital fingerprint in
the object and how to guarantee that transformations
of the object retain the fingerprint. In addition, a good
watermarking scheme should protect against collusion,
that is, groups of users working in unison to thwart the
scheme. By comparing their copies of an object and de-
termining how they differ, a group of users might be able
to create a new version by combining different pieces of
their copies, thereby eliminating the distributor’s ability
to trace the object back to any of them. Hence, it is im-
portant to understand how to construct fingerprinting
schemes that are secure against coalitions of attackers.

The literature on this type of fingerprinting is
extensive. Blakely, Meadows and Purdy [1] presented
early models of fingerprinting in 1985. Kilian et al. [7]
propose an orthogonal approach that focuses on reliably
embedding bits into documents.

Boneh and Shaw [3] address the explicit goal of con-
structing a fingerprinting scheme (in effect, a code) for
which the distributor can always discover at least one
member of any coalition of at most c users who produce
an illegal copy. They show that there is no uncondi-
tional way to achieve this goal, i.e., a group of collab-
orators can use a “majority” approach to create code-
words which defy unconditionally correct identification.
Boneh and Shaw go on to define collusion-secure codes,
which tolerate an ε probability of error by the tracing
algorithm against coalitions of size c, and then present
constructions of such codes.

The Boneh-Shaw code is used as a building block
for many sophisticated digital watermarking schemes,
including asymmetric fingerprinting [9] and anonymous
fingerprinting [10, 4]. Hence, improving the Boneh-

Shaw construction may also contribute to many inter-
esting applications.

Because a fingerprint must be embedded into a dig-
ital work, its length is an important parameter (robust
embedding procedures typically require a large amount
of source data for each embedded bit). For c + 1 to-
tal users, the Boneh-Shaw code uses Θ(c3 log(1/ε)) bits
to attain security against coalitions of size c. For n
users where n may be exponential in c, a concatenation
scheme [5] yields a code of length Θ(c4 log n log(1/ε)).
These lengths become impractical on the Internet,
where peer-to-peer services could make c as large as
100 or more. Lindkvist [8] describes constant factor im-
provements to the length of the Boneh-Shaw code for
small values of c. To our knowledge, the Boneh-Shaw
code remains the most efficient collusion-secure primi-
tive and there have been no significant improvements
in its length. Boneh and Shaw’s lower bound proof [3]
of 1

2 (c − 3) log 1
cε on the length of any collusion-secure

code describes a strategy that would break any code of
shorter length. Thus, there is a substantial gap between
the best lower bound and the known constructions.

This paper seeks to address this gap in three ways.
First, we show that the Boneh-Shaw construction is as
short as it can be by presenting a coalition strategy that
breaks the Boneh-Shaw code if the length is any shorter
than prescribed.

In Section 5, we then show that any secure code
has length Ω(c2 log(1/cε)) when log(1/ε) ≥ Kk log c, for
some constant K. Here k is the number of different “col-
umn types” appearing in the code, and is some measure
of the combinatorial complexity of the code. This im-
plies that no secure code can have length o(c2 log(1/cε)),
improving the current bound by a factor of c.

Finally, in Section 6, we define a general paradigm
for constructing codes: the center chooses a subset V
of the hypercube {0, 1}c+1, where c is the coalition
size. It constructs the code by repeating each of these
column types d times, and randomly permuting them.
The success probability of any adversarial strategy
will vanish to zero as d → ∞. However, we show
that no secure scheme following the paradigm has
length o(c3

log c log(1/cε)), by showing a lower bound for
the range ln(1/ε) ≥ K · E(V) log c/c, where E(V)
is the number of edges within the subgraph induced
by V , and K is a constant. This shows that the
combinatorial structure of the code is important to
the code’s performance, since our proof requires a
non-trivial bound on the average degree of induced
subgraphs in the hypercube.

It also suggests that any attempts at improved
constructions should be directed toward techniques that
lie outside our framework. We leave open the question

of constructing efficient codes for smaller values of ln(1
ε).

2 Notation and Definitions

A word (of length `) is an element of {0, 1}`. The value
at coordinate i of a word w is denoted by (w)i. For a
word w and a set B = {i1, . . . , it}, the restriction of w
to B, denoted w|B , is the word ((w)i1 , . . . , (w)it). The
weight of a word w, denoted by wt(w), is the sum of its
entries.

An (`, n)-code is a set of n codewords, each of length
`. An (`, n)-coding scheme is a randomized algorithm
for generating an (`, n)-code and some auxiliary output
(which will be given to a tracing algorithm).

Suppose we are given a set of words C =
{u1, . . . , us}. A column type is an element of {0, 1}s.
The column at position i of C is the word vCi =
((u1)i, (u2)i, . . . , (us)i). Given a column type u ∈
{0, 1}s, define BCu = {i : vCi = u}, that is, the set of
positions i whose columns are of type u. We omit the
superscripts when they are clear from context.

We use lg x to denote the base two logarithm of x.
H(x) is the binary entropy function H(x) = −x lg x −
(1− x) lg(1− x).

2.1 Collusion-secure codes We now formalize the
model of a collusive attack against a fingerprinting code.
The distributor constructs a code and marks each copy
of a digital work with a unique codeword using some
watermarking scheme specific to the type of data (e.g.,
music, video, computer programs). Each bit of the
codeword is embedded somewhere in the work, so that a
user cannot detect or remove the marks. We would like
to formalize this requirement, to abstract the specific
marking procedure from the construction of codes. This
is done by the so-called Marking Assumption [3]. First
we require a definition:

Definition 1. Let C = {u1, . . . , uk} be a set of code-
words from some code. We say that the position i is un-
detectable relative to C if (u1)i = (u2)i = · · · = (uk)i.

The Marking Assumption states that if a coalition
of users has codewords C = {u1, . . . , uk}, then the
coalition’s output word must match the codewords in
all undetectable positions. (This model was extended
to a more realistic one by Yacobi [12], who showed
that similar codes—with a constant improvement in
length—work in the new model.) Formally, if w is
generated by the coalition, then (w)i = (u1)i for all
positions i that are undetectable relative to C. At all
detectable positions, the output word may be 0, or 1,
or an “erasure,” denoted by ‘?’ (however, our attacks
will not use erasures). This models the fact that users
can find all the differences among their files and can

construct a new version by piecing together different
parts in which their copies differ.

Our results apply to collusion-secure coding
schemes, which were first defined and constructed by
Boneh and Shaw [3]. Formally:

Definition 2. (Secure coding scheme) An (`, n)-
coding scheme U (with tracing algorithm T) is a secure
coding scheme if, for all sufficiently large c, and for all
ε > 0, the following condition holds: for all coalition
strategies S and all C = {i1, . . . , ic} ⊆ {1, . . . , n},

Pr[({u1, . . . , un}, aux)← U(1c, ε);
w ← S({ui1 , . . . , uic}) : T (w, aux) ⊆ C] > 1− ε

where the probability is taken over the random choices
of U , S, and T .

(All algorithms are probabilistic and polynomial-
time in the lengths of their inputs. Note that U receives
c encoded in unary, and ε encoded in binary.)

A note about the binary representation of ε: be-
cause U is polynomial-time, the resulting code must
have length poly(ln(1/ε)). We view ln(1/ε) as a “secu-
rity parameter” for the code, because ε represents some
negligibly small probability.

3 Tools for Lower Bounds

All of our lower bound arguments have a similar flavor.
For some particular type of code, we fix the code
length to be less than the desired bound and choose
an arbitrary set of c + 1 users. We then consider all
c-sized coalitions of these users and show how each
coalition can, with large enough probability, generate
a word that belongs to a certain set of “ideal” words.
Because no user is a member of every such coalition,
the distributor cannot correctly accuse any user with
enough confidence. This intuition is formalized in the
following lemma:

Lemma 3.1. Suppose that there exists a coalition algo-
rithm S such that for infinitely many c and some ε > 0,
and for any invocation of an (`, n)-coding scheme U , the
following holds:

Fix an arbitrary set C = {u1, . . . , uc+1} of
c + 1 codewords, and let Cj = C − {uj}. If
there exists some set I of “ideal” words, such
that for all j ∈ {1, . . . , c+ 1} and all w ∈ I:

Pr[S(Cj) = w] ≥ (c+ 1)ε/|I|.

Then U is not a secure coding scheme.

Proof. Consider any tracing algorithm T ; we will ex-
hibit a subset of c users from {1, . . . , n} for which T ’s
error probability is at least ε, in violation of Definition
2. Note that this probability must include the random
choices of U , whereas in our scenario we have already
invoked U . For now, we will show that, conditioned on
U ’s random choices, T has error at least ε. Assume, for
the sake of contradiction, that this is not the case.

Let Tw be the (conditioned) random variable indi-
cating the subset of users accused on word w. Note
that for all w,

∑
j Pr[j ∈ Tw] ≥ 1, because the algo-

rithm must always accuse some user, and may accuse
several users at once.

By assumption, we have for all Cj :

ε >
∑
w∈I

Pr[S(Cj) = w ∧ j ∈ Tw]

=
∑
w∈I

Pr[S(Cj) = w] Pr[j ∈ Tw]

≥ (c+ 1)ε
|I|

∑
w∈I

Pr[j ∈ Tw]

because the random coins of the coalition and the dis-
tributor are independent and by hypothesis. Summing
the above expression over all j ∈ {1, . . . , c + 1} and
dividing by (c+ 1), we get:

ε >
ε

|I|
∑
j

∑
w∈I

Pr[j ∈ Tw] =
ε

|I|
∑
w∈I

∑
j

Pr[j ∈ Tw]

≥ ε

|I|
∑
w∈I

1 = ε,

which contradicts our assumption. So the (conditioned)
error probability of the tracing algorithm is at least ε.

We complete the argument as follows: say we fix
an arbitrary subset of c users, then invoke U . By
hypothesis, for any invocation of U , T ’s error is at
least ε (because the coalition strategy can use the words
corresponding to our selected users). Therefore, over
the random choices of U , T still has error at least ε, and
the code is insecure. �

Our lower bound proofs make use of a particu-
lar set of probabilities shown in Figure 1. For i ∈
{0, . . . , bc/2c}, define the probability ri = αi2, where
α is such that rbc/2c = 1/2 (we will only need the
fact that α ≤ 3/c2 for sufficiently large c). Then for
i ∈ {bc/2c + 1, . . . c}, define ri = (1 − rc−i). Note that
r0 = 0 and rc = 1. In addition, define δi = (ri − ri−1)
for i ∈ {1, . . . , c}. The ri values will be used in our
attacks against fingerprinting codes: when a coalition
detects a column of weight i, it will flip a coin of bias ri
to determine the output value at that column’s position.

0.25

0.5

0.75

1

5 10 15 20

Pr ri

b b b b b
b b b
b b
b b
b b b
b b b b b

b
δi

r r r r r r r r r r r r r r r r r r r r

r

Figure 1: Values of ri and δi for c = 20.

Now consider the following experiment: suppose
0 < r < 1, and we toss a coin having bias r (i.e., the
probability of heads is r) m times. Let ∆ be such that
0 ≤ r+∆ ≤ 1 and t = (r+∆)m is an integer. Let Br,t,m
be the event that exactly t of the tosses are heads. The
following lemma proves that this event occurs with good
probability.

Lemma 3.2. Let r ∈ (0, 1), r + ∆ ∈ [0, 1], and t ∈
{0, . . . ,m}, such that t = (r + ∆)m. Then

− ln Pr[Br,t,m]

≤ m∆2

min {r + ∆, 1− (r + ∆)}
+ 2 ln(m+ 1).

Proof. Define p = r + ∆ = t/m. Then we have:

Pr[Br,t,m] =
(
m

pm

)
rpm(1− r)(1−p)m

≥ (m+ 1)−22mH(p)rpm(1− r)(1−p)m

by the well-known lower bound for binomial coefficients,(
t
βt

)
≥ (t+ 1)−22tH(β) [6]. Taking logarithms, we have:

ln Pr[Br,t,m] + 2 ln(m+ 1)
≥ mH(p) + pm ln r + (1− p)m ln(1− r)

= pm ln(
r

p
) + (1− p)m ln(

1− r
1− p

)

= pm ln(1− ∆
p

) + (1− p)m ln(1 +
∆

1− p
)

Using the inequality ln(1 + x) ≥ x− x2/2, we get:

ln Pr[Br,t,m] + 2 ln(m+ 1)

≥ m

(
−∆− ∆2

2p
+ ∆− ∆2

2(1− p)

)
=

−m∆2

2p(1− p)
.

Suppose without loss of generality that p ≤ 1/2 ≤ 1−p;
then 1/2(1− p) ≤ 1 and the claim follows. �

Our next lemma shows that, with some probability
that is large enough for our purposes, throwing an
ri−1-biased coin has the same outcome as throwing an
ri-biased coin.

Lemma 3.3. For any i ∈ {1, . . . , c}, let ri−1, ri be as
described above. Suppose we have a coin with bias either
ri−1 or ri, which we flip m times. Then there exists
ti,m ∈ {0, ...,m} such that with either coin, exactly ti,m
heads occur with significant probability:

− ln min
{

Pr[Bri−1,ti,m,m],
Pr[Bri,ti,m,m]

}
≤ O(mα+ 1) + 2 ln(m+ 1)

Proof. We first consider the case when i = 1 or i = c.
If i = 1, then we let ti,m = 0. A coin with bias ri−1 = 0
always yields ti,m = 0 heads, and a coin with bias
ri = α yields zero heads with probability (1−α)m. Then
− ln(1 − α)m = m ln 1

1−α ≤
mα
1−α ≤ 2mα, as desired.

The analysis for i = c is similar, where we let ti,m = m.
From now on assume that i ∈ {2, . . . , c− 1}.

Next we address the case when m is “large,” i.e.
when m ≥ 1/δi. In this case, the interval [mri−1,mri]
has length at least 1, so it contains some integer ti,m.
Assume without loss of generality that ri ≤ 1/2; then
by Lemma 3.2, the expression from the claim is at most
mδ2

i /ri−1 + 2 ln(m+ 1). We have that δi = ri − ri−1 =
α(2i−1), so we can bound the fractional term as desired:

mα2(2i− 1)2

α(i− 1)2
≤ mα

(
2i− 1
i− 1

)2

≤ 9mα.

Finally we address the case when m is small; that is
mδi < 1. We use a slightly different technique here: let
Di−1, Di be the distributions corresponding to flipping
m coins with bias ri−1 and ri, respectively. Consider
the sum over all words w in {0, 1}m of the minimum
of the probability of w arising under either Di−1 or
Di. We can bound the probability of each w below
by taking the product of the least likelihoods for each
of the coordinates of w:∑
w

min
{

Pr
Di−1

[w],Pr
Di

[w]
}
≥

m∑
t=0

(
m

t

)
rti−1(1− ri)m−t.

This last sum is the binomial expansion of (ri−1 +
1 − ri)m = (1 − δi)m. There must exist some weight
t for which the sum over words of weight t yields
(1 − δi)m/(m + 1). Hence, the negative log of the
minimum probability that one gets exactly t heads is
− ln[(1 − δi)m/(m + 1)] ≤ O(mδi) + ln(m + 1). Since
m < 1/δi, the last bound is O(1) + ln(m+ 1). �

4 The Boneh-Shaw Code

As a primitive, Boneh and Shaw [3] construct a secure
(`, c + 1)-coding scheme, where ` = O(c3 log(1/ε)).
This primitive is then concatenated with other codes,
resulting in practical constructions whose lengths are
logarithmic in the number of users.

The construction begins with a fixed code Γ0(c, d).
Let xi be a column of height c + 1 in which the first
i bits are 1, and the rest are 0. Then Γ0(c, d) consists
of the columns x1, . . . , xc each duplicated d times. For
example, when c = 4 the code Γ0(4, d) for 5 users is
shown in Figure 2. The security comes from a secret
permutation π ∈ Scd that is applied to each word, to
create the code used for marking. Boneh and Shaw
prove that if d ≥ 2c2 log(2c/ε), then the code is secure.

u1 =

d︷ ︸︸ ︷
1 · · · 1

d︷ ︸︸ ︷
1 · · · 1

d︷ ︸︸ ︷
1 · · · 1

d︷ ︸︸ ︷
1 · · · 1

u2 = 0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1
u3 = 0 · · · 0 0 · · · 0 1 · · · 1 1 · · · 1
u4 = 0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 1
u5 = 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

Figure 2: The Boneh-Shaw code Γ0(4, d), before apply-
ing a permutation.

Recall that the set Bxk is the set of positions in
the code whose columns are xk. The security of the
Boneh-Shaw construction relies on the fact that if user
uj is innocent, the coalition cannot distinguish Bxj−1

from Bxj . If the coalition outputs a word w and d
is large enough, with high probability wt(w|Bxj−1

) ≈
wt(w|Bxj). By contrapositive, if these weights differ
significantly, this indicates that user j is probably guilty.
Also note that user 1 is certainly guilty if wt(w|Bx1

) 6=
0, and user c is certainly guilty if wt(w|Bxc) 6= d.
Because of these two endpoint constraints, the weights
wt(w|Bxi) must increase from 0 to d as i goes from 1
to c, so there must be a large gap between two adjacent
weights. This guarantees that the tracing algorithm can
always find a user who is guilty with high probability.

4.1 A Tight Lower Bound Our lower bound states
that the Boneh-Shaw construction is tight, i.e., that d
must be (asymptotically) as large as specified in their
construction, or else the code is insecure. The proof is
relatively simple, but it provides an instructive warm-
up for our more general results. In attacking a Boneh-
Shaw code, we cannot escape the endpoint constraints
that force the block weights to increase from 0 to d.
However, if the code is relatively short, we are able to
create words whose block weights increase “smoothly,”
so that the gaps between adjacent weights are not too

large. The shape of these ideal block weights are in fact
given by the ti,d values described in Lemma 3.3. When
the weights increase in this way, no tracing algorithm
is able to determine the guilt of any single user with
enough confidence.

Theorem 4.1. Let B be the Boneh-Shaw coding
scheme, that is, the (cd, c + 1)-coding scheme which
starts with Γ0(c + 1, d) and permutes the columns ran-
domly. If ` = o(c3 log(1

cε)), then B is not a secure coding
scheme.

Proof. First we define the set of ideal words for the
code. Recall that the Boneh-Shaw code is a random
permutation of d copies of the columns types x1, . . . , xc.
The ideal words are those that have weight ti,d when
restricted to columns of weight i, for all i (where ti,d is
the ideal weight from Lemma 3.3). Formally, the set of
ideal words is:

I = {w : ∀ i ∈ {1, . . . , c}, wt(w|Bxi) = ti,d}.

Let the code be C = {u1, . . . , uc+1}, and define the
coalition Cj = C − {uj}. Now we describe a coalition
algorithm for creating an output word, w, and show that
w is an ideal word with large enough probability. There
are two special cases: when the algorithm is given C1

(i.e., the missing word’s entries are all 1s), and when
it is given Cc+1 (i.e., the missing word’s entries are all
0s). In the former case, the algorithm cannot detect
positions Bx1 , so it must write 0s in those positions
(and because t1,d = 0, wt(w|Bx1

) = t1,d as desired). In
the latter case, the algorithm cannot detect positions
Bxc , so it must write 1s in those positions (tc,d = d,
so wt(w|Bxc) = tc,d). In either case, the algorithm
detects d columns each having weights 1, 2, . . . , c −
1, so it cannot tell whether those sets of columns
are, respectively, {Bx2 , . . . , Bxc}, or {Bx1 , . . . , Bxc−1}.
Therefore the algorithm simply guesses which situation
it is in. More specifically, it chooses b ∈ {0, 1} at random
and then randomly places exactly ti+b,d 1s in the weight
i columns, for each i. In these two cases, w is ideal with
probability 1/2.

In the general case, the coalition algorithm is given
Cj for some j 6= 1, c + 1. The coalition can therefore
discover j, by detecting exactly d columns each of
weight 1 through j − 2, exactly 2d columns of weight
j − 1, and exactly d columns each of weights j through
c − 1. Those columns having weights 1 through j − 2
comprise positions Bx1 to Bxj−2 , respectively, so the
algorithm randomly puts the proper number of ones in
those positions. Similarly, the columns having weights j
through c comprise positions Bxj+1 to Bxc , respectively,
so the algorithm randomly places the proper number of

ones at those positions. For each of the 2d positions in
Bxj−1 ∪ Bxj , the algorithm flips a coin with bias rj−1

and writes a one for heads, and zero otherwise.
First note that when the output word w is ideal

(i.e., w ∈ I), it is uniformly distributed over I since the
coalition’s coin flips are independent. It now suffices to
show that Pr[w ∈ I] ≥ (c+1)ε. Lemma 3.1 then implies
that the code is not secure.

Suppose that ` = o(c3 ln(1/cε)); then d =
o(c2 ln(1/cε)). We may assume that d + 1 ≤ ((c +
1)ε)−1/8, because d must be polynomial in ln 1/ε. Re-
call that α ≤ 3/c2. By the description of the coalition
algorithm, w ∈ I if events Brj−1,tj−1,d,d and Brj−1,tj,d,d

occur. By Lemma 3.3,

− ln Pr[w ∈ I] = O(dα+ 1) + 4 ln(d+ 1)

≤ o

(
ln

1
(c+ 1)ε

)
+

1
2

ln
1

(c+ 1)ε

≤ ln
1

(c+ 1)ε
,

for sufficiently large c and small ε, so Pr[w ∈ I] ≥ (c+1)ε
and we are done. �

5 A General Lower Bound

In this section, we extend the lower bound from the
previous section to apply to any secure coding scheme.
With Boneh-Shaw codes, a coalition only tosses coins
for 2d indistinguishable columns since it can detect and
categorize all the other columns exactly. In the general
case, the coalition may not be able to categorize any
of the columns exactly, so it instead tosses a coin of
appropriate bias for every column. As a result, the lower
bound loses a factor of c.

Furthermore, the success of this strategy depends
on the number of different column types which appear
in a particular coding scheme—the fewer there are, the
better the attack’s performance. For a coding scheme
U , let k denote the expected number of different column
types (taken over the distributor’s random choices).

Theorem 5.1. If U is an (`, n)-coding scheme, then
` = Ω(c2 log(1

cε)) when ln(1
ε) ≥ K · k log c, where k is

the expected number of distinct column types and K is
some large enough constant.

In particular, this means that no secure code has
` = o(c2 log(1

cε)).

Proof. Coalition Strategy. We show that a simple
coalition strategy works against all codes: For each
position i, let y be the number of ones seen by the
coalition in that position. The coalition flips a coin
having bias ry and writes 1 for heads, and 0 for tails

(if the coalition cannot detect a column because it is all
0s or all 1s, the coalition behaves as described, because
r0 = 0 and rc = 1).

The code used by the center depends on its random
choices, and hence so does the set of ideal words we
use for the lower bound proof. We first analyze the
case in which the center has no randomness, that is the
code itself is fixed. For a particular setting ρ of the
center’s randomness, let Vρ denote the corresponding
set of columns. Let kρ = |Vρ| denote the number of
different column types which appear, and let ερ be the
conditional probability of the coalition being successful
given the coins ρ. Note that the coalition’s global
success probability is the expected value of ερ taken
over the choices for ρ: ε = Eρ[ερ]. Similarly, we use
k = Eρ[kρ] to denote the expected number of column
types.

Ideal Target Words. Pick an arbitrary (c+1)-subset
C = {u1, . . . , uc+1} of U , and let Cj be the size c
coalition Cj = C − {j}. When omitted, all references
to columns will be with respect to C. The ideal words
are similar to those in Theorem 4.1: they have weight
exactly ty,|Bx| when restricted to Bx, for each column
type x of weight y (recall that Bx is the set of positions
in which the values of words in C form the vector x).
Formally:

I = {w : ∀ x ∈ {0, 1}c+1, wt(w|Bx) = twt(x),|Bx|}

Lemma 5.1. Let Vρ, kρ, ερ be as in the previous discus-
sion. The coin-flipping coalition strategy implies

− ln(ερ(c+ 1)) ≤ O(α`) + 3kρ ln(`/kρ)

We prove this lemma below. For now, note that this
bound depends only on the number of column types,
and has no relation to the actual code. This bound still
holds when we average over the choice of ρ. We get:

ε(c+ 1) ≥ Eρ
[
e−O(α`)−3kρ ln(`/kρ)

]
= e−O(α`)

Eρ[g(kρ)],

where g(k) = e−3k ln(`/k). One can verify by computing
the second derivative that g(k) is convex-∪ in k for all
settings of `, and hence we can apply Jensen’s inequality
to obtain:

ε(c+ 1) ≥ e−O(α`)g(k).

This means that one of the two terms in the product
must be smaller than

√
ε(c+ 1) in order for the code

to be secure. Now the first possibility, e−O(α`) ≤√
ε(c+ 1), implies ` ≥ Ω(1

α ln 1
ε(c+1)) = Ω(c2 ln 1

ε(c+1))
(this is the bound we claim in the theorem statement).

The second possibility, namely g(k) ≤
√
ε(c+ 1),

holds, in particular, when ` ≥ k exp(1
6k ln 1

ε(c+1)). Thus:

` ∈ Ω
(

min
{
c2 log

1
cε
, k exp(

1
6k

log
1

ε(c+ 1)
)
})

.

Finally, this minimum is dominated by its left-hand
argument when ln(1

ε) ≥ K ·k log c for some large enough
constant K. This completes the proof of Theorem 5.1.
All that is left is to prove Lemma 5.1. �

Proof. [Lemma 5.1] We would like to apply Lemma 3.1.
First, note that within the set I, the coalition’s output
is uniformly distributed, since the coalition’s coin flips
are independent.

Now fix a particular coalition Cj . For each possible
column type x ∈ {0, 1}c+1 where y = wt(x), we can
apply Lemma 3.3, since we know that Cj flips coins
with bias either ry or ry−1. The coalition generates an
ideal word if it generates a word of weight twt(x),|Bx| on
each block Bx.

Hence the (negative natural log of the) probability
that coalition Cj creates an ideal word is therefore

− ln Pr[w ∈ I]

≤
∑

x∈{0,1}c+1

(
O(α|Bx|+ 1) + 2 ln(|Bx|)

)
≤ O(α`) + 3

∑
x

ln |Bx|

The summation is maximized when all the |Bx|
are equal, since they must sum to `. Because there
are kρ unique column types, the summation is at most
kρ(ln(`

kρ
)). Moreover, by Lemma 3.1, the conditional

error probability ερ satisfies ln(c + 1)ερ ≥ ln Pr[w ∈ I].
Hence we get − ln(c+ 1)ερ ≤ O(α`) + 3kρ(ln(`/kρ)). �

6 Bounds for the Multiplicity Paradigm

In this section, we prove a lower bound for any coding
scheme that follows a certain general approach, which
we call the “multiplicity paradigm.” The Boneh-Shaw
construction, in particular, fits this paradigm. The
essential properties are as follows: each column is
duplicated d times (its “multiplicity”), where d depends
on the desired security ε, while the choice of the columns
themselves is independent of ε. Moreover, the number of
indistinguishable columns is the same for every coalition
and the security of the scheme depends entirely upon the
secrecy of the permutation π applied to the duplicated
columns (not on the secrecy of the columns themselves).

For a set of columns V , define E(j)(V) =∑
x∈V

∑
y∈V I

(j)
x,y, where I

(j)
x,y is the indicator variable

that is 1 if x and y differ only in coordinate j, and 0
otherwise. Also, define E(V) =

∑
j E

(j)(V). If we view
V as a choice of vertices defining a subgraph of the hy-
percube of dimension c + 1, then E(V) is the number
of edges in that subgraph. We are now ready to make a
formal definition of the paradigm, and to prove a lower
bound.

Definition 3. (Multiplicity paradigm) An (`, c +
1)-coding scheme U follows the multiplicity paradigm
with columns {Vc} (we call U a multiplicity code) if
the following hold:

1. {Vc} is a (polynomial-sized) publicly-known ensem-
ble, indexed over c, where Vc is a code of length c+1
representing the columns.

2. For all j, E(j)(Vc) = O(1/c)E(Vc).

3. U(1c, ε) constructs the output code by randomly
permuting d copies of each column of Vc, and letting
the rows be the codewords.

Theorem 6.1. Let U be an (`, c + 1)-coding scheme
that follows the multiplicity paradigm with columns
{Vc}. Then ` = Ω(c3

log |Vc| log 1
cε) when ln(1

ε) ≥
K max{(E(Vc) log c)/c, c log c} for some constant K.

In particular, no secure multiplicity code has length
` = o(c3

log c log 1
cε).

Proof. Our proof is a combination of techniques from
Theorems 4.1 and 5.1. The ideal words again have
weight twt(x),|Bx| when restricted to Bx, for all x ∈ Vc.

The coalition strategy relies on the fact that when
the column set is public, there are relatively few columns
for which the missing user’s value is unknown. First, the
coalition guesses the proper ordering of its codewords
and determines where the missing codeword fits in the
ordering. This can be done with probability 1

(c+1)! . As
in Theorem 4.1, when the coalition detects exactly d
copies of a certain column type, it then checks Vc for
the matching (and complete) column type x, and places
twt(x),|Bx| 1s on those columns (if there is no match,
then the coalition has guessed the ordering of its users
incorrectly, and simply gives up by outputting one of
its users’ codewords). If the coalition detects exactly 2d
columns of a certain type x, then it flips a coin having
bias rwt(x) for each of the 2d positions. Coalition Cj sees
E(j)(Vc) such blocks of 2d indistinguishable columns.
As in Theorem 5.1, for coalition Cj :

− ln Pr[w ∈ I]

= O
(
c ln c+ dαE(j)(Vc) + E(j)(Vc) ln(d+ 1)

)
= O

(
c ln c+ E(j)(Vc)(d/c2 + ln d)

)
Because ` = d|Vc|, and by Definition 3, we can

simplify this to

O
(
c ln c+ E(Vc)[`/(c3|Vc|) +

1
c

ln(`/|Vc|+ 1)]
)
.

As in Theorem 5.1, we can set this equal to ln((c+ 1)ε).
We obtain three inequalities, since one of the terms in

this sum must exceed 1
3 ln((c + 1)ε) for the code to be

secure. If we assume that ln(1
ε) ≥ 3c log c, we obtain a

lower bound for ` from the remaining two inequalities:

` = Ω

min

|Vc|
E(Vc)

c3 log
1
cε
,

|Vc| exp
(
O

(
c

E(Vc)
log

1
cε

))

The condition ln(1
ε) ≥ K(E(Vc) log c)/c makes the

top term of the minimum dominate. (To see this, set
f = c log(1/cε)

E(Vc)
. Then the top argument dominates when

c2 ≤ 1
f exp(O(f)), which is true when f ≥ K ′ log c) for

some suitably large K ′.) Ultimately, we get that the
code is insecure if ` = o

(
|Vc|
E(Vc)

c3 ln 1
cε

)
.

To make this bound concrete, we need to upper-
bound the average degree of a subgraph of the hyper-
cube of dimension c + 1. It is known that the total
number of edges having both endpoints in Vc is at most
1
2 |Vc|dlg |Vc|e ([2], Section 16). Since |Vc| is independent
of ε, and hence polynomial in c by Definitions 2 and
3, the average degree is O(log c), yielding the desired
result. �

7 Conclusions and Open Problems

We have tightened the gap between the best known con-
struction and lower bound for general secure codes, but
a factor of c still remains. Additionally, we have proven
bounds only for extremely low error rates. Whether
these bounds extend to practical values of ε is unknown.
Resolving these gaps is an important question.

We have also defined a wide class of code con-
structions, and have given better lower bounds on their
length. A log c gap remains between the Boneh-Shaw
construction and our lower bound. We conjecture that
the following construction resolves the issue. Choose
column types in the following way: starting with ~0, let
the first log c coordinates take on all O(c) possible val-
ues. Then, with the first log c coordinates set to 1, let
the next log c coordinates take on all values. Repeat
c/ log c times, for a total of O(c2) columns types and
average degree Θ(log c). When this subgraph is used in
the multiplicity paradigm, the resulting code is of length
O(c3

log c log(1/ε)). We note that our coalition attack from
Theorem 6.1 does not work against this construction;
however, it still remains to devise a tracing algorithm
and bound its error.

Other avenues for constructing more efficient codes
should focus on breaking the multiplicity paradigm in
some way, for example, by directly constructing codes
for more than c + 1 users, randomly (and secretly)
choosing the columns, or varying the multiplicities of
the columns.

8 Acknowledgements

We would like to thank Eric Lehman for introducing
the problem and Venkat Guruswami for pointing out
the upper bound on the average degree of a subgraph
of the hypercube. Dan Boneh provided very useful
feedback on this work, and also helped us improve the
presentation of the results. Finally, we would like to
thank Madhu Sudan and Ron Rivest for support and
helpful comments. A. Smith was supported by U.S.
ARO Grant DAAD19-00-1-0177.

References

[1] G.R. Blakely, C. Meadows, and G.B. Purdy. “Finger-
printing long forgiving messages,” In Hugh C. Williams,
editor, Advances in Cryptology – CRYPTO’85, LNCS
218, Springer-Verlag, Berlin, 1985, p. 180.

[2] B. Bollobás. Combinatorics. Cambridge University
Press, 1986.

[3] D. Boneh and J. Shaw. “Collusion-secure fingerprinting
for digital data,” IEEE Transactions on Information
Theory, vol IT-44, Sep. 1998, pp. 1897–1905.

[4] J. Camenisch. “Efficient Anonymous Fingerprinting
with Group Signatures.” In T. Okamoto, editor, ASI-
ACRYPT 2000, LNCS 1976, pp. 415–428.

[5] B. Chor, A. Fiat, and M. Naor. “Tracing traitors.”
In Yvo G. Desmedt, editor, Advances in Cryptology –
CRYPTO’94, LNCS 839, Springer-Verlag, Berlin, 1994,
pp. 257–270.

[6] I. Csiszár and J. Körner, Information Theory. Coding
Theorems for Discrete Memoryless Systems, Academic
Press, New York, 1982.

[7] Joe Kilian, F. Thomson Leighton, Lesley R. Mathe-
son, Talal G. Shamoon, Robert E. Tarjan, and Francis
Zane. “Resistance of digital fingerprints to collusional
attacks.” Proceedings of 1998 IEEE International Sym-
posium on Information Theory. Cambridge, MA, 16-21
August 1998, p. 271.

[8] Tina Lindkvist. “Fingerprinting of digital documents,”
Dissertation No 706, Linköping University, September
2001.

[9] B. Pfitzmann and M. Waidner. “Asymmetric finger-
printing for larger collusions.” In 4th ACM Conference
on Computer and Communication Security, 1997.

[10] B. Pfitzmann and M. Waidner. “Anonymous finger-
printing.” In Walter Fumy, editor, Advances in Cryp-
tology – EUROCRYPT’97, LNCS 1233, Springer-
Verlag, Berlin, 1997, pp. 88-102.

[11] A. Silverberg and J. Staddon and J. L. Walker. “Ef-
ficient traitor tracing algorithms using list decoding,”
In Colin Boyd, editor, Advances in Cryptology – ASI-
ACRYPT 2001, LNCS 2248, Springer-Verlag, Berlin,
2001, pp. 175–192.

[12] Y. Yacobi. “Improved Boneh-Shaw Content Finger-
printing,” Proceedings of CT-RSA 2001, San Francisco,
CA, pp. 378–391.

