List-Decoding of Linear Functions
and Analysis of a
2-Round Zero Knowledge Argument

Cynthia Dwork, Microsoft

Ronen Shaltiel, Weizmann
Adam Smith, MIT

Luca Trevisan, Berkeley

De-randomization
and
2-Round Zero Knowledge

Cynthia Dwork, Microsoft

Ronen Shaltiel, Weizmann
Adam Smith, MIT

Luca Trevisan, Berkeley

This paper

O Dwork-Stockmeyer: 2-round ZK in non-standard model

O This paper: understand hardness assumption

m Weaker assumptions (worst-case hardness)
® Uniform protocols

= Simpler proofs

O Main tools:

m List-decoding results for code of
all linear functions {0,1}* — {0,1}X

O New use of de-randomization in cryptography
[...,Lu’02,...,.BOV’03,...]

/.ero-Knowledge Arguments [GMR,BCC]

O Interactively prove a statement without leaking
any extra information

O Extensively studied
O Building block for other protocols

O : number of messages

P 2 >V

Standard Computational Model

Honest Prover & Verifier are PPT (prob poly-time)

Cheating Prover & Verifier need time
® 4 rounds... possible [FS]

® 3 rounds... open ?

m 2 rounds... 1mpossible [GO] \‘

Dwork-Stockmeyer: 2-round ZK

O Different model (following [DN,DNS,...]):

m fixed polynomial bound on prover’s resources
(space,time)

m Verifier & simulator are PPT

O 2 round argument for NP: P <« challenge \Y

IreSponse >

O Example: D.S. protocol with linear functions:
m Honest prover needs space and time
m Cheating prover needs at runtime

O Tradeoff: physical understanding vs. efficiency

De-randomization and 2-round ZK

O Ronen S: “There must be an extractor there.”

O Average-case hardness via list-decoding
m Better reductions
® Uniform protocols

® Simpler proofs

O New facts about linear functions

Outline

O Basic 1dea behind DS protocol
O Our Goal:

= linear functions hard for resources < k2

O List-Decoding Functions

O Combinatorial result: advice-bounded provers

0O Complexity-theoretic result: small circuit provers

Dwork-Stockmeyer: 2-round ZK

Public function [:{0,1}%X — {0,1}%

challenge

response

Limited

resources
N e

Dwork-Stockmeyer: 2-round ZK

Public function [:{0,1}%X — {0,1}% Q
x €, {0,1)F vV

Proof of “Either 1s true or I know / (x)”
>

O Proof takes only bits

O Cheating prover must compute f(x) on the fly

O Soundness < 1is for P

O Hardness not enough...

Prooft etficiency

Public function [:{0,1}%X — {0,1}%

k
P < X €, 10,1} Vv

Proof of “Either 1s true or I know / (x)”
>

O For proof to be easy:

e I

m/1s linear

Our Goal: Hard Linear Functions

(kxk
Y J ;
L (xﬂ = { f
0 Hard for prover: Prob [P(x) =/(x)] <&
O Always easy with £~ space

® We want hardness for < £- resources (e.g.)

O Two models:

— prover: cannot store all of Mf

— prover: circuit size < k?

Results

O Advice-bounded provers
= Random function hard for prover with advice < k? bits

m Simpler proof of DS result

O Time-bounded provers

m Security under worst-case hardness assumption

= Assume: 3 h € DTIME(29(")
worst-case hard for MAM-circuits of size 2™

24+17)

» Uniform protocol secure against prover with size L2y

Outline

1 Basic 1dea behind DS protocol
& Our Goal:

= linear functions hard for resources < k2

O List-Decoding Functions

O Combinatorial result: advice-bounded provers

0O Complexity-theoretic result: small circuit provers

[inear Functions as Codewords

Coding space Distance

Usual notion Strings XV Hamming

Functions

De-randomization (.11 =5 (0.1}4 Probx[f(x) # g (X)]

O Conceptually different
O Technically 1dentical

g— (2(0....00), g(0...01), g(0...10), ..., g(1...11))

T 7

vector with entries in X = {0,1 }k

List-Decodable Codes

0 Codewords are functions {0,1}* — {0,1}*
O Distance(f,g) = Pr [f(X) # g(x)]

Error-Correcting Code:
Every ball of radius R contains
at most one point

List-Decodable Codes

0 Codewords are functions {0,1}* — {0,1}*
O Distance(f,g) = Pr _[f(X) # g(X)]

Error-Correcting Code:
Every ball of radius R contains
at most one point

List-Decodable Code:
Every ball of radius 1- €
contains at most #(€) points

Why List Decodability?

0 Fix g:{0,1}X — {0,1}%

(Q: How many k x k matrices M such that
Pr[glx)=Mx]> ¢!

A: (1/€)* = small polynomial number of matrices
O Fix prover P who wants to cheat

(Q: How many functions / such that
P can cheat w. prob. > &7

O Same question! (almost... P can be randomized)

List-decodable codes
. .. "
Advice-Bounded Provers/ | e incomprssitl

functions

O Suppose that prover’s advice 1s at most A bits

® As much pre-processing as desired

m Only keeps A bits about / (e.g. smart card)
O How many f s.t. 4 prover who cheats w. prob. > &?

= Each prover can cheat for (1/€)** linear functions”

= Prover described by advice: 2 possible provers
m Describe any “cheatable’ f using A + 2 k log(1/¢€) bits

m Aslong as A -2 k log(1/¢) -100 bits,
Prob. that random function is “cheatable” at most 2-100

Proving List-Decodability

0 Fix g:{0,1}X — {0,1}%

(Q: How many k x k matrices M such that
Pr[glx)=Mx]> ¢!

A: (1/€)*f = small polynomial number of matrices

O Usual proof technique (Johnson bound) fails

O Problem: min. distance of code is 12

m (Flip one bit 1n a matrix)

O We want list-decoding radius 1-&.

Proof” that list size is (1/€)%+1

O Meshulam, Shpilka: 4 subspace V' of matrices s.t.
\v4 €V, Pr, [M.x # X]>1-¢&?
0 Dimension(V) = k> — 2 k log(1/¢)

O Apply to V:
Ball of radius 1-& contains O(1/¢€) elements of

OV has (1/€)%* cosets, each with min. distance 1-€2
O Ball of radius 1-£ contains 1/€ from each coset

0 Total number of functions is (1/€)%*!

Advice-Bounded Provers

O Linear functions form a list-decodable code

O Random matrix 1s secure against
advice-bounded provers
O Resulting protocol 1s non-uniform
m Different matrix for every setting of k
m No compact description of matrix
O Uniform protocol?

m No! Advice-bounded prover has time
to reconstruct the whole matrix

Outline

1 Basic 1dea behind DS protocol
& Our Goal:

= linear functions hard for resources < k2

i List-Decoding Functions

= Combinatorial result: advice-bounded provers

0O Complexity-theoretic result: small circuit provers

A Basic Decoder

O Suppose Pr [P(x)=M.x]|> &

O Then PP ()=

P — Pw

time (DY) > k2

A Better Decoder: Output 1 bit

O Suppose Pr [P(x)=M.x]|> &

OThen DFG, j)=M; j

. |D
L]

" x> P > P(x)

time (DF) can be very low... O(time(P) k%)
Why does this help?

Hardness-Randomness Paradigm

O Suppose h: {0,1}2108k 5 10,1}

1s hard for circuits of size (note: ' 1s trivial)
OUse M =TT(h)

TT(h) = (h(0....00), A(0...01), A(0...10), ... , A(1...11))

OP cheats in time <

= D computes M; ; = h(i, j) In time <

L], D L J
x> P —Px)

Our Decoder: Uses Extra Help

Need to assume
O Suppose Prx[P(x) =Mx]2>¢& hardness for non-

. . deterministic circuits
OThen DXG,j)=M, ; MAND

non-determinism y
non-uniform advice
L,]

L]
" x> P » P(x) [*

time (DF) can be very low... O(time(P) k%)

Results

O Connection to list-decoding (standard)

O Advice-bounded provers

= Random function hard for prover with advice < k? bits

m Simpler proof of DS result

O Time-bounded provers

= Assume: 3 h € DTIME(29™)
worst-case hard for MAM-circuits of size 2(72+ 7

= Uniform protocol secure against prover with size k1 +2Y

Conclusions

Better understanding of DS model & protocol

Open questions

Better decoding — nicer assumptions

Increase to arbitrary polynomial gap

m Possible if one assumes completely malleable
encryption

3. Other uses of de-randomization 1n crypto

Questions?

