Round-Efficient Multi-party
Computation with a Dishonest Majority

Jonathan Katz, U. Maryland

Rafail Ostrovsky, Telcordia
Adam Smith, MIT

Longer version on http://theory.lcs.mit.edu/~asmith

Multi-party Computation [GMWS87]

Also called “Secure
O
Function Evaluation™

X5 \x3 ¢
Network of 7 players \ %
O - "
n

Each has input x, Protocol

Want to compute f(x,,...,x,)

for some known function f 1

E.g. electronic voting f(xl’ X)

Multi-party Computation [GMWS87]

Even if f out of n

players try to cheat: \ *
‘ Protocol
1. Cheaters learn nothing 1
(except output)
flxgs..00x,)

2. Cheaters cannot affect
output

Multi-party Computation [GMWS87]

Even if f out of n

players try to cheat:

1. Cheaters learn nothing
(except output)

2. Cheaters cannot affect

2
p/ Necessary

when t > n/2

\x3 T

v

flxgs..00x,)

output except to force (unanimous) abort

Round-efficient MPC tolerating any 7 < n

For any PPT f (), we get (abortable, unfair) MPC:
e In O(log n) rounds... with black-box simulation

e In O(1) rounds... with non-black-box simulation

e No assumption of Common Random String, but:
— Given CRS, MPC takes O(1) rounds [BMR, CLOS]

— This talk: how to generate a CRS from scratch fast?

Review: Standard Synchronous Model

e Synchronous network of 7 players (= randomized TM’s)

e Authenticated, unblockable Broadcast Channel

e Adversary corrupts I < 71 players

— Malicious coordination of corrupted players
— Choice of corruptions is static (= before start of protocol)

— Messages may be rushed

e Computationally bounded adversary

6

Big Picture: Active Adversary

I <n/2 e O(depth) rds, unconditional security, adaptive

[GMW87, CDDHRY9]

(1) rounds, static [GMWS87, BMR90]

1 =>n/2
(Abortable)

e Robustness and fairness impossible

O(n+k) rounds static (?) [....BG,GL]

Cleve, GMW]

O(log n) static with black box simu.

O(1) static with non-black-box simulation

lation

Rest of talk

e Reduction of MPC to “simulatable coin-tlipping”
Two protocols

1. O(log n) round protocol (black box)
based on Chor-Rabin proof scheduling

2. O(1) round protocol (non-black-box)

based on Barak’s non-malleable coin-tflipping

Simulatable Coin-Flipping 1s Enough

Honest-but-Curious adversary:

[BMRO9O] O(1) rounds for any f < n

Intuition: to go from Honest-But-Curious to Active, we
want independence of zero-knowledge proofs [GMW]

Possible 1n €2(71) rounds (sequential proofs)

Possible 1n O(1) rounds [CLOS90]

— Need a common random string

To get CRS from scratch: simulatable coin-tflipping

Simulatable Coin-Flipping 1

V PPT adversaries A, 3 PPT Sim, :

-
, coins e Indistinguishable
¢ | > from real execution
er{0,1}* Viewa | o coins e (¢, 1}

Z

Output k coin flips (or abort) so that:

1) Adversary can bias outcome only by sometimes aborting

2) Simulator can set outcome to any desired string

(needed for composition theorems)

10

Simulatable Coin-Flipping 11

V PPT adversaries A, 3 PPT Sim, :
\

, coins e Indistinguishable
¢ | > from real execution
er{0,1}* Viewa | o coins e (¢, 1}

Z

Composition Lemma:

Simulatable coin-flipping ~ Secure MPC
+ ~ = protocol
MPC protocol based on CRS (from scratch)

Simulatable Coin-Flipping 111

€{0,1}

V PPT adversaries A, 3 PPT Sim, :

coins

9

C

View A

\

e Indistinguishable
> from real execution
e coins € {c’, 1}

Z

Two protocols:

Proof scheduling of Chor-Rabin: O(log 1) rounds

Non-malleability technique of Barak: O(1) rounds

Simulatable CF: Protocol Outline [Lindell02]

I) Forall i i I. P,9) m,=Commit(r)

II) For all i: gﬁ. P °>>> r; (no decommitment)

) Output coins = 7| XOR ¥, XOR ... XOR 7,

Simulator must
e Extract from cheaters

* Lie about X, (1.e. falsify proofs)

Problem: Malleability of Proots

 When proofs overlap, bad things can happen:

P Proot of x; P, | Proof of x, P,

* P, can choose x, to depend on X

e Protocols often provably broken

e Non-malleable Zero-Knowledge [DDN]:
— Resists this attack

— Huge round complexity*

* = more later in talk

Chor-Rabin Proof Scheduling

* For all i: P, must prove some statement X; in ZK

* logn phases, each with 2 blocks

e Each phase:
o | . ® Players either blue or red
e '?#}’ ° * At phase

" e 4., e| Blue=(P,Ithbitofis0)
AP =l Red = (P, | 7-th bit of is 1)

ot 1% © .o | o 1stblock: Red prove to Blue
° ° 2nd block: Blue prove to Red

At every point, each player is either prover or verifier

Chor-Rabin Proof Scheduling

* For all i: P, must prove some statement X; in ZK

* logn phases, each with 2 blocks

e Each phase:
Players either blue or red

°e .<E:." " * At phase

" e 8. e| Blue=(P,Ithbitofis 0)
.o‘ .<h:|o ‘o Red = {P”t—thbit of 1is 1}

1% © o * Ist block: Red prove to Blue
2 ®*) 2nd block: Blue prove to Red

At every point, each player is either prover or verifier

Chor-Rabin Proof Scheduling

* For all i: P, must prove some statement X; in ZK

* logn phases, each with 2 blocks

e Each phase:
Players either blue or red

‘e A\, /L ° e At phase f:
i % R — el Blue = {P, | #-th bit of 7 is 0}

°«® e o o RedZ{Pi|t—thbitOfiiS 1}
o ¢ %% o o e 1st block: Red prove to Blue
2nd block: Blue prove to Red

At every point, each player is either prover or verifier

Chor-Rabin Proof Scheduling

* For all i: P, must prove some statement X; in ZK

* logn phases, each with 2 blocks

e Each phase:
A R Players either blue or red
W ° o o e At phase 7:

--—-:——%-‘— e Blue = {P, | #-th bit of 7 is 0}
oo % "o Red = {P, | t-th bit of i is 1}

o ¢ %% o o e 1st block: Red prove to Blue
2nd block: Blue prove to Red

At every point, each player is either prover or verifier

Chor-Rabin Scheduling: Analysis

At every point, each player 1s
either prover or verifier but never both
For every pair 1,/:
Eventually P, proves to P; and P; proves to P,

Simulator who controls a single honest player can
— Falsify all proofs

— Extract witnesses from all other players
Sufficient for simulatable coin flipping (and MPC)
(Not known 1f Chor-Rabin works directly in MPC)

Getting to Constant Rounds

 All pairs 1,] of players run some pairwise coin flipping

protocol 77 simultaneously
e Getn(n-1) strings O;;

* Give proofs with respect to O;; in the global coin flip

* Need some kind of non-malleable coin flipping protocol

Non-Malleable Coin Flipping [Barak(02]

e Two executions run concurrrently

e Resists man-in-the-middle attack

A <7Z' generates 0'> C <7Z' generates p> B
(man 1n

the middle)

Either p=0 or p, oindependent

e (Constant rounds

Parallel Non-Malleable Coin Flipping

* Two sets of n parallel protocols

A et > . {_ P> B
A, < 02 >(manin< p2 > B,

the middle)
A, < on > < on > B,

* All O; independent, random

* For each 1: either p;e{0y,..., 0'n} or p:independent

The end

Improved round complexity for dishonest majority
Protocols still far from practical... how well can we do?
Adaptive adversaries?

log(n)-round on black-box round complexity?

What about composability?

— Composability results useful even for “stand-alone” model

and essential for practice
— Concurrent composability: impossible [Lindell03]

— Limited non-malleability?

23

Old slides graveyard

Review: Computational Power

Two main models:

e ‘Computational’ security
— Adversary runs in polynomial time

— Assume secure cryptographic primitives (e.g. signatures)

e ‘Statistical’ security
— Adversary has unbounded computational power

— Assume secure channels between honest player

25

Definition of Security [...,Canett199]

Real Protocol 7U Ideal Protocol TC’
Simulator S,
Adversary A °® o
= o | Trusted
‘ e | Party
o
o

Security: real protocol equivalent to 1deal protocol with TP

VPPTA,3PPT S, : T[A](15) = TU[S,] (1%)

Ideal Protocol for function f ()

. Vi: P;sends x; to TP
. TP computes y = f(x,,...,x,)

. TP broadcasts y

. Honest players output y

S N

Abortable Ideal Protocol for f ()

Vi: P, sends x . to TP

Protocol
TP computes y = f(x,,...,x,) neither
TP sends yto A robus.t

nor fair
A replies accept/reject

o

TP sends y’=y (if accept) or y’ =L (if reject)
Honest players output y’

Outline

Passive adversaries: O(1) rounds for any 7 < n

Intuition: to go from passive to active, we want

independence of zero-knowledge proofs
Independence easy with Common Random String (NIZK)

To generate a CRS: simulatable coin-flipping
— Proof scheduling of Chor-Rabin: O(log n) rounds

— Non-malleability technique of Barak: O(1) rounds

Open questions

29

Passive (honest-but-curious) adversaries

e All players follow protocol faithfully

e A tries to learn by looking at internal state of 7 parties

(e.g. honest verifier ZK)

e [BMR90]: O(1) rounds for any 7 < n (static)

All communication over broadcast channel

From passive to active adversaries [GMW]

General schema: real players P, emulate passive players P’
1. Vi: P, commits to initial state of P,” : input x,, coins r;

2. P;proves knowledge of (x;,r))

1’
3. Repeat:
e P, commits to new state of P’
e P broadcasts messages sent by P, at this round.

e P proves consistency of new state and messages with

previous round.

31

From passive to active adversaries [GMW]

Main challenge: independence in this emulation
e Committed input values should be independent

e Proofs should be independent. We want that
— Simulator can prove false statements

— Simultaneously extract witnesses from cheaters.

Rest of talk: how to guarantee independence

Why Coin Flipping 1s Enough

Suppose all players see

0= 6] 62 63 eo o 6

a common random string O

Divide O'into n pieces

. : O
Player 1 gives commitments ' °
and proofs with respect to ®

string O; g '
/
Players’ proofs are mutually iNZénd@dtoofs w.r.t. O,

Simulator can prove false statements and simultaneously extract

from malicious players.

33

