
Round Efficiency of Multi-Party Computation
with a Dishonest Majority∗

Jonathan Katz† Rafail Ostrovsky‡ Adam Smith§

May 2, 2003

Abstract

We consider the round complexity of multi-party computation in the presence of
a static adversary who controls a majority of the parties. Here, n players wish to
securely compute some functionality and up to n−1 of these players may be arbitrarily
malicious. Previous protocols for this setting (when a broadcast channel is available)
require O(n) rounds. We present two protocols with improved round complexity: The
first assumes only the existence of trapdoor permutations and dense cryptosystems,
and achieves round complexity O(log n) based on a proof scheduling technique of Chor
and Rabin [13]; the second requires a stronger hardness assumption (along with the
non-black-box techniques of Barak [2]) and achieves O(1) round complexity.

1 Introduction

Protocols for secure multi-party computation (mpc) allow a set of n parties to evaluate a
joint function of their inputs such that the function is evaluated correctly and furthermore no
information about any party’s input — beyond what is leaked by the output of the function
— is revealed (a formal definition is given in Section 2). Since the initial results showing that
mpc was feasible [35, 25, 7, 12], a number of works have focused on improving the efficiency
of these protocols and in particular their round complexity (e.g., [1, 6, 30, 29, 22, 31, 15]).
Known results for generic mpc secure against malicious adversaries in the computational
setting may be summarized as follows (results are stated for the setting when a broadcast
channel is available; we discuss the setting without a broadcast channel in Section 5):

• Secure two-party computation may be achieved in a constant number of rounds by
applying the compiler of Lindell [31] (based on earlier work of Goldreich, Micali, and
Wigderson [25]) to the constant-round protocol of Yao [35] (which is secure against
semi-honest adversaries).

∗A preliminary version appears in the proceedings of Eurocrypt 2003, Warsaw, Poland, May 2003.
†Dept. of Computer Science, University of Maryland, College Park, MD, USA. Email: jkatz@cs.umd.edu
‡Telcordia Technologies, Morristown, NJ, USA. Email: rafail@research.telcordia.com
§MIT Lab. for Computer Science, Cambridge, MA, USA. Email: adsmith@mit.edu

1

• Secure mpc for honest majorities (i.e., when the number of corrupted players is strictly
less than n/2) may be achieved in a constant number of rounds using the protocol of
Beaver, Micali and Rogaway [6, 34].

• Secure mpc with dishonest majority (i.e., where up to n−1 players may be corrupted)
can be achieved in O(n) rounds using the protocols of Beaver, Goldwasser, and Levin
[5, 27]. (Actually, these works show a protocol requiring O(k + n) rounds where k is
the security parameter. Using the techniques of [31], however, this may be improved
to O(n).)

• Canetti, et al. [11] give a protocol tolerating adaptive adversaries controlling a dis-
honest majority in a model in which a common random string is assumed; the round
complexity of this protocol depends on the depth of the circuit for the function being
computed, but is independent of n.

Note that the setting with a dishonest majority (t ≥ n/2) requires a weaker variant of
the usual definition of mpc. Even for the case n = 2, one cannot prevent the adversary from
aborting the protocol, or from possibly learning information about the value of the function
even when an abort occurs [25, 14].

Our Results. We focus on improving the round complexity of mpc when a majority of
the players may be corrupted. We show two protocols for that setting which have improved
round complexity compared to previous work. Our first protocol assumes the existence of
trapdoor permutations and dense cryptosystems, and achieves round complexity O(log n).
Our second protocol runs in a constant number of rounds, but requires slightly stronger
hardness assumptions as well as non-black-box proof techniques. We prove our results in the
standard model of a synchronous, complete network with a broadcast channel. Our results
can be extended to the setting when no broadcast channel is available, and give improved
round complexity there as well; see Section 5.

Our overall approach consists of two steps. We first consider the specific case of the
coin flipping functionality, and give protocols for securely computing this functionality in
the presence of a dishonest majority. We then note that mpc of arbitrary functions can be
reduced to the problem of secure coin flipping; in fact, we show that any functionality can
be computed in a constant number of rounds following an execution of a secure coin-flipping
protocol.

Our main result, then, is to give two protocols with improved round complexity for the
specific case of coin flipping. The first, based on a proof scheduling technique of Chor and
Rabin [13], requires O(log n) rounds. (Interestingly, the Chor-Rabin protocol itself does not
seem sufficient to implement mpc; we need to first establish a common random string and
then use that string for secure computation.) Our second coin-flipping protocol extends
recent work of Barak [2]; specifically, we show how to modify his (asynchronous) two-party
non-malleable coin-flipping protocol to obtain one which is secure even when composed in
parallel n times, and from there obtain a constant-round coin-flipping protocol which is
secure in the (synchronous) multi-party setting. We may thus summarize our results as
follows (here, n is the number of players, k is the security parameter, and we always assume
a synchronous network with broadcast):

2

Theorem 1.1. There exist protocols for (n − 1)-secure simulatable coin-flipping with the
following properties:

1. O(log n) rounds, assuming one-way permutations.

2. O(1) rounds, assuming collision-free hashing, trapdoor permutations, and dense cryp-
tosystems secure against 2k

ε
-size circuits. The proof uses a non-black-box simulation.

Theorem 1.2. For any poly-time function f , there exist (n − 1)-secure protocols for com-
puting f with the following properties:

1. O(log n) rounds, assuming trapdoor permutations and dense cryptosystems.

2. O(1) rounds, assuming collision-free hashing, trapdoor permutations, and dense cryp-
tosystems secure against 2k

ε
-size circuits. The proof uses a non-black-box simulation.

Note that information-theoretically secure protocols are impossible in our setting: generic
mpc protocols tolerating t ≥ n/2 imply the existence of two-party oblivious transfer proto-
cols, which require computational assumptions [30].

Organization of this paper. In Section 2 we specify our model and definition of
mpc. Section 3 shows how to achieve coin flipping in logarithmic rounds; the constant-
round protocol is explained in Section 4. Section 5 shows how to achieve mpc for arbitrary
functionalities given a protocol for secure coin flipping.

2 Definitions

Our definition of security for mpc is taken from the works of Canetti [8] and Goldwasser
and Lindell [28], which in turn follow a long line of work on defining security of protocols
(e.g., [25, 27, 32, 4, 24]). More recently, a stronger definition of universally composable
(uc) computation has been proposed [9]; however, uc-mpc is known to be impossible in
the presence of a dishonest majority without the prior assumption of a common random
string [10]. Since we wish to avoid a setup assumption of this form (indeed, we give explicit
protocols for obtaining a common random string), we do not use the uc framework directly.
Nonetheless, some of the protocols we use as building blocks were proven secure in the uc

framework, a fact which highlights the utility of such definitions.

2.1 Network Model

Formal definitions of security are given below, but we provide an overview of our model and
definition of security here. We consider a system of n parties who interact in a synchronous
manner. Each pair of parties is connected by a perfect (authenticated, secret, unjammable)
point-to-point channel, and we also assume a broadcast channel to which all players have
access. This channel provides authenticity (i.e., that a given broadcast message originated
from a particular party) and also ensures that all parties receive the same message even if
the broadcasting party is dishonest. Messages sent on any of these channels are delivered in
the same round they are sent.

3

We assume a static adversary who corrupts up to n − 1 of the players before execution
of the protocol. The adversary is active, and corrupted parties may behave in an arbitrary
manner. Although the adversary may not delay or block messages from honest parties, we do
make the standard rushing assumption: i.e., the adversary sees all messages sent by honest
players to corrupted players at a given round i (including broadcast messages) before sending
its own messages for round i. Finally, we considercomputational security only and therefore
restrict our attention to adversaries running in probabilistic, polynomial time.

Although we assume a broadcast channel, our techniques yield protocols with improved
round complexity even when broadcast is not available (see Section 5).

2.2 Secure Multi-Party Computation and Coin-Flipping

Following the outline of [8, 28], we define an ideal model of computation and a real model
of computation, and require that any adversary in the real model can be emulated (in
the specific sense described below) by an adversary in the ideal model. Our randomized
function f to be computed by the n parties is denoted by f : ({0, 1}∗)n → ({0, 1}∗)n where
f = (f1, . . . , fn); that is, for a vector of inputs x = (x1, . . . , xn), the output is a vector of
values (f1(x), . . . , fn(x)). Note that we may also view f as a deterministic function on n+1
inputs, where the final input represents the random coins used in evaluating f . In a given
execution of the protocol we assume that all inputs have length k, the security parameter.

Ideal model. In the ideal model there is a trusted party which computes the desired
functionality based on the inputs handed to it by the players. Let I ⊂ [n] denote the set
of players corrupted by the adversary. Then an execution in the ideal model proceeds as
follows [24] (this particular definition is called secure computation with unanimous abort and
no fairness in the taxonomy of [28]):

Inputs Each party i has input xi. We represent the vector of inputs by x.

Send inputs to trusted party Honest parties always send their inputs to the trusted
party. Corrupted parties, on the other hand, may decide to abort or to send mod-
ified values to the trusted party. Let x′ denote the vector of inputs received by the
trusted party.

Trusted party sends results to adversary If x′ is a valid input (i.e., no parties aborted
in the previous round), the trusted party generates uniformly-distributed random coins,
computes f(x′) = (y1, . . . , yn), and sends yi to party Pi for all i ∈ I. In case a party
aborted in the previous round, the trusted party sends ⊥ to all parties.

Trusted party sends results to honest players The adversary, depending on its view
up to this point, may decide to abort the protocol. In this case, the trusted party
sends ⊥ to the honest players. Otherwise, the trusted party sends yi to party Pi for
each i /∈ I.

Outputs An honest party Pi always outputs the response yi it received from the trusted
party. Corrupted parties output ⊥, by convention. The adversary outputs an arbitrary
function of its entire view throughout the execution of the protocol.

4

For a given adversary A, the execution of f in the ideal model on input x (denoted
idealf,A(x)) is defined as the vector of the outputs of the parties along with the output of
the adversary resulting from the process above.

Real model. As described in Section 2.1, we assume a synchronous network with rushing.
Honest parties follow all instructions of the prescribed protocol, while corrupted parties are
coordinated by a single adversary and may behave arbitrarily. At the conclusion of the
protocol, honest parties compute their output as prescribed by the protocol, while corrupted
parties output ⊥. Without loss of generality, we assume the adversary outputs exactly its
entire view of the execution of the protocol. For a given adversary B and protocol Π for
computing f , the execution of Π in the real model on input x (denoted realΠ,B(x)) is defined
as the vector of outputs of the parties along with the output of the adversary resulting from
the above process.

Having defined these models, we now define what is meant by a secure protocol. (Note:
By probabilistic polynomial time (ppt), we mean a probabilistic Turing machine with non-
uniform advice whose running time is bounded by a polynomial in the security parameter k.
By expected probabilistic polynomial time (eppt), we mean a Turing machine whose expected
running time is bounded by some polynomial, for all inputs.)

Definition 1 ([8]). Let f and Π be as above. Protocol Π is a t-secure protocol for computing
f if for every ppt adversary A corrupting at most t players in the real model, there exists
an eppt adversary S corrupting at most t players in the ideal model, such that:

{idealf,S(x)}x∈({0,1}∗)n
c≡ {realΠ,A(x)}x∈({0,1}∗)n .

As mentioned in the Introduction, our protocols for mpc proceed in the following way:
First, a common random string is generated using a coin-flipping protocol; next, the result-
ing string is used by the parties for the remainder of their execution. Thus, using a simple
composition result, we may construct our protocols for (n − 1)-secure mpc in two steps:
(1) construct an (n − 1)-secure coin-flipping protocol (i.e., a protocol computing the func-
tionality f(1m, . . . , 1m) 7→ Um, where Um denotes the uniform distribution over {0, 1}m);
and (2) construct an (n− 1)-secure protocol for evaluating any functionality in the common
random string model (i.e., where all parties are first given a uniformly-distributed string of
the appropriate length). Step (1) is discussed in Sections 3 and 4, and step (2) and the
composition theorem are discussed in Section 5.

Since our main contributions are our protocols for coin flipping (achieving (n− 1)-secure
mpc in the common random string model is relatively straightforward), and since the def-
inition of security simplifies considerably in this case, we present a stand-alone definition
here. Note that the definition does not reduce to the most simplistic notion of coin-flipping
in which we simply have a guarantee that the output of the protocol is indistinguishable
from random. Instead, it must be that a simulator can produce a view which is indistin-
guishable from that of the real adversary, but where the outcome has been forced to be
a particular random string provided by an outside party. A related notion of simulatable
bit-commitment was considered in [33]. Thus, we refer to the notion as “simulatable coin
flipping” (even though this is precisely the same notion as (n − 1)-secure evaluation of the
coin-flipping functionality).

5

Definition 2 (Simulatable Coin Flipping). A protocol Π is a simulatable coin-flipping
protocol if for every ppt adversary A corrupting at most n − 1 parties, there is an eppt

machine SA such that the outcomes of the following experiments are computationally indis-
tinguishable (as a function of k):

real(1k, 1m) ideal(1k, 1m)
c, V iewA ← realΠ,A(1k, 1m) c′ ← {0, 1}m

c̃, V iew ← SA(c′, 1k, 1m)
Output (c, V iewA) If c̃ ∈ {c′,⊥}, Output (c̃, V iew)

Else Output fail

Here we parse the result of running protocol Π with adversary A (denoted realΠ,A(1k, 1m))
as a pair (c, V iewA) where c ∈ {0, 1}m ∪ {⊥} is the outcome and V iewA is the adversary’s
view of the computation.

For clarity, we encapsulate the preceding discussion here:

Lemma 2.1. Simulatable coin-flipping (Definition 2) is equivalent to securely realizing the
coin-flipping functionality for all t ≤ n− 1.

3 Simulatable Coin-Flipping in O(log n) Rounds

In order to construct a simulatable coin-flipping protocol, we will use a protocol in which
all pairs of players can prove statements (in zero-knowledge) to each other. More precisely,
suppose that each player Pi has a (publicly known) statement xi and each honest player also
has private input wi (where wi is a witness for xi). We would like a protocol in which each
player Pi proves that xi is true (and that furthermore, Pi knows a witness); upon completion
of this protocol, all honest players should accept the result if and only if all players have
successfully completed their proofs.

The naive approach to solving this problem is to have every (ordered) pair of players Pi, Pj
simultaneously execute some constant-round zero-knowledge proof of knowledge in which Pi
proves knowledge of wi to Pj. However, such an approach does not work (in general) due
to the potential malleability of the proof system. Namely, it is possible that an adversary
controlling Pj could divert a proof being given to Pj by Pi and hence prove a false statement
(or, at least, one for which Pj does not explicitly know a witness) to Pk. In particular, this
is always possible without some mechanism to prevent simple copying of proofs.

An alternate approach — one taken by previous work in the case of dishonest majority
[5, 27] — is to have each pair of parties execute their proofs sequentially over a total of n
“stages” of the protocol. In stage i, player Pi proves knowledge (in parallel) to all other
players. This clearly avoids the malleability problem discussed above, but results in an
O(n)-round protocol.

In fact, the issue of proof scheduling was previously dealt with by Chor and Rabin [13]
in the context of mutually independent commitments. They proposed a scheduling strategy
which results in a round complexity of O(log n). The scheduling guarantees that at any given
time, no player is playing both the prover and the verifier. Moreover, every player eventually

6

Protocol 1 (Chor-Rabin proof scheduling). Inputs: Player i holds (wi, x1, ..., xn).

For i = 1, .., n, let c
(1)
i , ..., c

(r)
i denote the r = dlog ne-bit binary representation of i.

Let Bluet =
{
i : c

(t)
i = 0

}
and Redt =

{
i : c

(t)
i = 1

}
.

Let (P, V) denote a constant-round publicly verifiable, parallel-composable ZKAK.

1. For t = 1, ..., r = dlog ne, repeat: O(n2) pairs of proofs in parallel.
(a) ∀i ∈ Bluet, j ∈ Redt: Pi runs P (xi, wi), Pj runs V .
(b) (After all proofs of (a) are finished)
∀i ∈ Bluet, j ∈ Redt: Pj runs P (xj, wj), Pi runs V .

All messages are sent over the broadcast channel. If any proof between any pair of parties
fails, all players abort immediately.

proves to every other player. This means that no matter what set of players is controlled by
the adversary, he will eventually have to prove all his statements to some honest player. We
present the Chor-Rabin (cr) scheduling strategy in Protocol 1.

To use cr scheduling in our context, we will require a zero-knowledge argument of knowl-
edge (ZKAK) which satisfies two additional properties (informally):

Public verifiability: A third party who views a transcript of an execution of the proof should
be able to determine in polynomial time whether or not an honest verifier would have
accepted.

Parallel composability In our application, n/2 copies of the proof system will be run syn-
chronously and in parallel. We require the existence of: (1) a simulator that can
simulate the view of a dishonest verifier executing n/2 copies of the proof system in
parallel with independent provers; and (2) a witness extractor that can extract a wit-
ness for each proof from a malicious prover who is executing n/2 proofs in parallel with
independent verifiers.

Although not all ZKAKs satisfy both the above properties [26], the 5-round ZKAK of Feige
and Shamir [19] (which only requires one-way functions) does.

Chor and Rabin [13] proved that when the {xi} are commitments and the {wi} are
the corresponding decommitments, their proof-scheduling technique guarantees mutually
independent commitments. However, to use the protocol as a module in a larger protocol
(i.e., as in a gmw-style compiler from the honest-but-curious model to the malicious model
[25]), a more sophisticated notion of security is necessary. Specifically, it is tempting to try
to prove that cr scheduling realizes the ideal functionality of mutually independent proofs,
that is, the functionality in which all players hand their pair (xi, wi) to a trusted party who
broadcasts only the list of players who supplied valid pairs.

It seems that the cr protocol does not satisfy this stronger property. Suppose the players
use a malleable zk proof system for which it is possible, given access to a prover for either

7

x1 or x2, to prove knowledge of a witness for the statement x1 ∨ x2. (Artificial examples of
such systems can be constructed.1) Consider an execution of the protocol for which only P1

and P2 are honest. Player P3 is never proving to both P1 and P2 simultaneously—only ever
to one or the other. Moreover, when P3 is proving to P1, then P2 is proving to some other
corrupted player, and similarly when P3 is proving to P2. Thus, P3 could claim the statement
x1 ∨x2 without ever knowing an actual witness, and successfully pass all the proving stages.

Canetti, et al. [11] use a somewhat different ideal functionality as a basic step in the
construction of multiparty protocols, namely a commit and prove functionality. We do not
know of any way to prove that the cr scheduling protocol satisfies that definition, either.

Nevertheless, the cr scheduling protocol does satisfy very strong properties when the
adversary controls all but one player, and this is sufficient for our purposes. The formulation
of the property as it appears here is inspired by the notion of witness-extended emulation,
due to Lindell [31].

Lemma 3.1 (Chor-Rabin Scheduling). When Chor-Rabin scheduling is instantiated with
any parallel-composable, publicly verifiable ZKAK we have:

Completeness: If all players are honest, and R(xi, wi) = 1 for all i, then all players will
accept the output of the protocol.

Simulatability: For a machine A, let Ax,r denote the adversary with inputs x = (x1, ..., xn)
and random tape r.

There is a simulator S with inputs 1k,x and oracle access to Ax,r and two outputs:
a protocol view V and a list of potential witnesses w = (w1, ..., wn). For any ppt

adversary A who controls all but one player Pi, S is eppt and:

1. When (∃wi s.t. R(xi, wi) = 1), the simulator’s output is computationally indistin-
guishable from the view of A in an interaction with the honest Pi. For all x:

V
c≡ viewA,Pi(x, r).

2. When the simulated transcript is accepting, the simulator is almost certain to
extract a witness for xj, for all j 6= i:
Pr[acceptPi(V) and (∃j 6= i : R(xi, wi) = 0)] < negl(k).

Proof. Completeness of the protocol follows directly from the completeness of the ZKAK,
and so we turn to simulatability. The proof follows the reasoning of [13]. Without loss of
generality, say the adversary controls all players except P1. From the perspective of P1, the
Chor-Rabin protocol is a sequence of 2 log n stages, where each stage consists of n/2 parallel
executions of the ZKAK. In log n of these stages, P1 is acting as the prover and in log n stages
P1 acts as a verifier. By parallel composability of the ZKAK, we immediately see that the
simulator can always simulate the view of the adversary for those stages when P1 acts as a

1 Consider the standard zk protocol for Graph Isomorphism of (G0, G1). Prover sends H and then Verifier
asks for the isomorphism H ↔ Gb, for random b. The proof for (G0, G1)∨ (G′0, G

′
1) works as follows: Prover

sends H,H ′, Verifier replies with a bit b, and Prover shows isomorphisms H ↔ Gb1 and H ′ ↔ G′b2 such that
b = b1 ⊕ b2. A cheating intermediary who has access to a prover for (G0, G1) or (G′0, G

′
1) can fake a proof

for (G0, G1) ∨ (G′0, G
′
1). A similar modification of Blum’s Hamitonian Path proof system also works.

8

Protocol 2 (Simulatable coin flipping). On input 1k, 1m:

1. ∀i, Pi : ci ← Commit(ri; si)

2. ∀i, Pi sends ci

3. Invoke cr scheduling to show that ∀i,∃(ri, si) such that ci = Commit(ri; si).

4. ∀i, Pi sends ri.

5. Invoke cr scheduling to show that ∀i,∃si such that ci = Commit(ri; si).

6. Output c =
⊕n

i=1 ri, or ⊥ if any proofs failed.

All messages are sent over the broadcast channel.

prover. By the same token, in those stages when P1 acts as a verifier (and assuming that
all proofs given to P1 by other players are successful), P1 can extract witnesses for n/2 of
the {xi}i6=1. That P1 in fact extracts witnesses for all the {xi}i6=1 follows from the fact that
every other player acts as a prover to P1 at some point in the protocol. We can combine
these observations to form a simulator using the witness-extended emulation technique of
Lindell [31].

One way to understand the theorem above and its preceding discussion is that cr

scheduling realizes mutally independent proofs when t = n − 1, but not necessarily for
t ≤ n− 2. Viewed in that light, the following section proves that for coin-flipping, which is
non-interactive and requires no private inputs, security for t = n− 1 is sufficient.

3.1 From Scheduled Proofs to Simulatable Coin-Flipping

To use cr scheduling for simulatable coin-flipping, we apply a technique due to Lindell [31].
Suppose that we have a non-interactive, perfectly binding commitment scheme (these can be
constructed based on one-way permutations, for example). Players first commit to individual
random coins and prove knowledge of the committed values. Next, they reveal the values
(not the decommitment strings) and prove correctness of their decommitments. We give the
resulting construction in Protocol 2. Note that primitives weaker than ZKAKs are sufficient:
we may use strong witness-indistinguishable proofs of knowledge in the first phase, and zero-
knowledge proofs (of membership) in the second phase. However, using these would make
the protocol and proofs more cumbersome.

Theorem 3.2. Protocol 2 is a simulatable coin-flipping protocol.

Proof. (sketch) The simulator is given a value c and needs to simulate the view of an adver-
sary who corrupts n− 1 players, while also ensuring that the final output of the protocol is
c (we ignore for the present discussion the possibility of abort). Assume without loss of gen-
erality that the adversary corrupts all players except P1. The simulator begins by following

9

steps 1 and 2 exactly, and committing to a random value r1. In step 3, the simulator may
extract witnesses {(rj, sj)}j 6=1 by Lemma 3.1 (in this case, the simulator does not even need
to be able to simulate the proofs of P1 since it in fact has the necessary witness).

At this point, the simulator knows {rj}j 6=1. It sets r′1 = c ⊕
⊕n

j=2 rj and sends r′1 in
step 4. In step 5, the simulator can simulate (false) proofs that its commitment in step 1
was indeed a commitment to r′1; this follows from Lemma 3.1 (in fact, here the simulator
no longer needs to extract any witnesses). These simulated proofs are computationally
indistinguishable from “real” proofs, thus ensuring that the entire simulated protocol is
computationally indistinguishable from an actual execution of the protocol.

4 Simulatable Coin Flipping in Constant Rounds

To obtain a constant-round coin-flipping protocol, we introduce a simple notion of parallel
composability for two-party non-malleable coin-flipping protocols, and show that protocols
satisfying this notion can be used to achieve multi-party coin-flipping. Although the recent
two-party protocol of Barak [2] does not satisfy our notion of non-malleability, we show how
to extend it so that it does.

Our resulting coin-flipping protocol is described in Protocol 3. As noted above, it relies on
a modification of the coin-flipping protocol of Barak [2] which is described in Section 4.1 and
is denoted by NMCF(1k, 1m) for security parameter k and coin-length m. The protocol also
uses an adaptively secure, unbounded-use non-interactive zero-knowledge proof of knowledge
(nizkpk) in Steps 4 and 5. De Santis and Persiano showed how to construct these based on
dense cryptosystems (pkc) and trapdoor permutations [16].2 The use of n different strings
to guarantee independence of non-interactive proofs is due to Gennaro [21].

The completeness of Protocol 3 follows trivially from the completeness of the coin-flipping
protocol and the nizkpk proof system. To prove the security of the protocol, we consider the
effect of a coin-flipping protocol (A,B) in the following scenario. The adversary, C, simul-
taneously plays man-in-the-middle against with n pairs of copies of the protocol executed
synchronously and in parallel (cf. Figure 1). We call this an n-fold, parallel man-in-the-
middle attack. It is a restriction of the more robust versions of non-malleability defined by
Dolev, Dwork and Naor [17], but it seems incomparable to that of Barak [2].

Let r1, ..., rn be the outputs of the left-hand protocols, and r̃1, ..., r̃n be the outputs of
the right-hand protocols. We clearly cannot prevent the adversary from mounting a trivial
relaying attack, in which she copies messages from one or more protocols on the right to one
or more protocols on the left. This allows the adversary to force the outcomes of some of
the protocols to be identical. Instead, we require that the left-hand outputs r1, ..., rn all be
random and independent, and that each of the right-hand outputs r̃i is either random and
independent of the others, or equal to one of the left-hand outputs rj.

Definition 3. A coin-flipping protocol Π = (A,B) is non-malleable against n-fold parallel
composition if for any ppt algorithm C, there is an eppt algorithm Ĉ such that the following

2In fact, one needs only weaker primitives: a strong witness-indistinguishable proof of knowledge in Step 4
and a zero-knowledge proof in Step 5. However, these distinctions make the notation of the protocol more
cumbersome.

10

Protocol 3 (Constant-round simulatable coin flipping).
Let R(c, (x, s)) denote the relation c = Commit(x; s), where Commit is a perfectly binding,
non-interactive commitment scheme. Suppose that for security parameter k, the nizkpk

system uses a crs of length ` = `(k,m).

1. Run 2
(
n
2

)
protocols in parallel. For each ordered pair (i, j) ∈ [n]× [n], i 6= j:

Run coin-tossing protocol NMCF(1k, 1n`) (see Lemma 4.1) to generate a string of n`

coins which will be parsed as n strings σ
(1)
i,j , ..., σ

(n)
i,j ∈ {0, 1}`.

2. Pi: xi ← {0, 1}m

3. Pi sends ci = Commit(xi, si)

4. Pi sends, for j = 1, ..., n: nizkpk
σ

(i)
i,j

of (xi, si) such that R(ci, (xi, si)).

5. Pi sends xi and also, for j = 1, ...n: nizkpk
σ

(i)
i,j

that there exists si such that

R(ci, (xi, si))

6. Output
⊕n

i=1 xi, or ⊥ if any previous proofs or coin-flipping protocols failed.

All messages are sent over the broadcast channel. Honest players abort immediately if any
nizkpk proofs fail.

A1 ←→
A2 ←→
...

...
An ←→

C
(Man in the

middle)

←→ B1

←→ B2
...

...
←→ Bn

Figure 1: Parallel Composition of Non-Malleable Protocols

are computationally indistinguishable:

1. output(A,B,C),Π(1k) where this denotes the 2n + 1-tuple consisting of the 2n outputs
of A1, ..., An, B1, ..., Bn and the view of C, when executing an n-fold parallel man-in-
the-middle attack.

2. (ρ1, ...ρn, ρ̃1, ..., ρ̃n, τ), where first the strings ρ1, ...ρn, σ1, ...σn are selected uniformly
at random, and the output of Ĉ(ρ1, ...ρn, σ1, ...σn) consists of τ followed by a specifica-
tion, for each i, of which value to assign ρ̃i out of {σi} ∪ {ρ1, ..., ρn}.

It is not clear a priori that all non-malleable coin-flipping schemes satisfy this definition.
In fact, it appears to be orthogonal to the definition of non-malleability in [2]: on one hand,
it requires synchronous (not concurrent) execution of the 2n protocol pairs, and so a protocol
which satisfies it may be insecure when any one of the executions is not synchronized. On
the other hand, this definition requires security when the adversary has access to several

11

protocols. In particular, if any of the building blocks of the coin-flipping protocol are not
parallel-composable, then the resulting protocol may not satisfy the definition.

Lemma 4.1. The coin-flipping protocol of [2] can be modified to satisfy Definition 3.

We present the modified protocol in the following section. However, we first show that
we can use it to obtain a constant-round simulatable coin-flipping protocol.

Lemma 4.2. Protocol 3 is a simulatable coin-flipping protocol.

Proof. (sketch) We begin by describing the algorithm used by the simulator, and then show
that the simulation satisfies Definition 2. In addition to the simulator for the coin-flipping
protocol, we will use the extractor and simulator for the nizkpk system and the languages we
need. The two phases of the extractor (generation and extraction) are denoted by Ext1,Ext2.
Similarly, the simulator is denoted by Sim1 and Sim2.

On input c ∈ {0, 1}m, the simulator does the following:

• Pick an honest player at random (w.l.o.g. P1). Allow the adversary to control the
remaining honest players. That is, wrap the original adversary A in a circuit A′ which
makes the honest players follow the protocol. No special simulation of these players is
required.

• Pick 2(n−1) strings ρ2, ..., ρn, σ2, ..., σn as follows. Recall that each string is parsed as n
segments, each of which is long enough to serve for nizkpk. Use the nizkpk simulator
to generate segment 1 of each string (independently), i.e. ρ

(1)
i , σ

(1)
i ← Sim(1k) for all i.

Use the nizkpk extractor to generate segments 2, .., n of each string, that is ρ
(j)
i , σ

(j)
i ←

Ext(1k) for all i and for j = 2, ..., n.

The simulator keeps the side-information necessary for simulation and extraction with
respect to each of these strings.

• (Step 1) Run the simulator Ĉ from (n− 1)-fold parallel composition on the adversary,
on inputs ρ2, ..., ρn, σ2, ..., σn. Note that here, P1 is playing the roles of A1, .., An−1

and B1, ..., Bn−1. Denote the outputs of the coin flipping protocol by σ1,j and σj,1 for
j = 2, ..., n, as in Protocol 3.

• (Steps 2, 3 and 4) Run these steps honestly: choose x1 ← {0, 1}m, pick coins s1, let
c1 = Commit(x1; s1) and prove knowledge of x1 using nizkpk.

• Extract the values x2, ..., xn from the proofs at Step 4 (this is possible since the values
used by other players were all generated by the extractor for the nizkpk). Compute
x′ = c⊕

⊕n
j=2 xj.

• (Step 5) Send x′. For each j = 2, ..., n, use the simulator for the nizkpk to fake proofs

of “∃s′ such that R(c1, (x
′, s′))” with respect to σ

(1)
1,j .

• Either the protocol aborts, or all honest players output the string
x′ ⊕

⊕n
j=2 xj = c.

12

Protocol 4 (Parallel NM coin flipping (NMCF(1k, 1m))).
Steps L0.1.x, R0.1.x (Left commits to α): Left party chooses a hash function h1, and
sends h1 and y1 = Com(h1(0k)). It then proves using a PSWIUAK that it knows a value
α of length at most klog k such that y1 = Com(h1(α)).

Steps L0.2.x, R0.2.x (Right commits to β): Left party chooses a hash function h2, and
sends h2 and y2 = Com(h2(0k)). It then proves using a PSWIUAK that it knows a value
β of length at most klog k such that y1 = Com(h1(β)).

Step L1 (Commitment to r1): Left party selects r1 ← {0, 1}m and commits to it using
a perfectly binding commitment scheme. The commitment is denoted α1.

Steps L2.2–L2.4,R2.1–R2.3 (Prove knowledge of r1): The left party proves to the right
party its knowledge of the value r1 committed by α1 using a PSWIPOK.

Step R3 (Send r2): The right party selects r2 ← {0, 1}m and sends it. Step L4 (Send

r) The left party sends r = r1 ⊕ r2. (No decommitment string is revealed).

Steps L5.1–5.9, R5.2–R5.10 (Prove that r = r1 ⊕ r2): The left party proves, using a
PZKUAK, that either r = r1⊕ r2 or r ∈ Rα‖β,k, where {R·,·} is an n-evasive set family.

The proof of the success of this simulation relies on several observations. First, the
strings output by the generators are pseudo-random, and so the behaviors of the adversary
and simulator are the same as if the strings were truly random. By Lemma 4.1, the simulation
of the NMCF protocols is indistinguishable from a real execution, and the strings generated
will, with overwhelming probability, be from {ρ2, ..., ρn, σ2, ..., σn}.

Second, as observed by Barak [2], nizk proof of knowledge systems remain secure even
if the adversary may choose the crs from among a polynomial set of random (or pseudo-
random) strings. The adversary will not be able to make his committed values (in Step 3)
dependent on those of the honest players, since that would violate the hiding property of
the commitment or the zero-knowledge property of the proof system (in fact, all we need
here is strong witness indistinguishability). Moreover, the simulator will be able to extract
the committed values of the cheater since the adversary proves with respect to the strings
generated by the extractor. Finally, the simulator’s proof of consistency of his decommitment
will appear legitimate, again because of the zero-knowledge property, and the adversary’s
proofs will have to remain sound.

Remark 1. The use of nizkpk in the above protocol requires a dense pkc. We expect that
one can avoid this assumption by using (non-malleable) interactive zk proofs of knowledge
which rely on a public random string. We defer details to the final version.

4.1 Parallel Composability of Barak’s Coin-Flipping Protocol

The material of this section appears in much greater detail in Appendix A.
The proof of Lemma 4.1 is similar to the proofs of Theorems 2.4 and 3.4 in [2]. There are

two main modifications to Barak’s protocol which are necessary. First, the two proof systems

13

that are used as sub-protocols must themselves be parallel composable. This is trivial for
the strong witness-indistinguishable proof of knowledge. As for the zk universal argument,
the original paper of Barak and Goldreich [3] gives a construction which is concurrently
composable and thus parallel composable.

Second, the evasive set family that is used in the proof of security must resist generation
of an element by ppt ccircuits, even when n strings from the family are given (here n is the
number of players and not the security parameter). By changing the union bound in the proof
of existence of evasive set families ([2], Theorem 3.2), it is possible to show the existence of
sets which remain evasive given n elements, provided that we increase the security parameter
appropriately.

The remainder of this section contains the definitions necessary to state the NMCF pro-
tocol (Protocol 4). The notation used in the protocol definition is taken from [2] for consis-
tency. Note that here PZKUAK (resp. PSWIUAK) refers to a parallel composable universal
argument of knowledge which is also zero-knowledge (PZKUAK) or witness-indistinguishable
(PSWIUAK). These can be constructed based on trapdoor permutations and collision-free
hash families secure against 2k

ε
-size circuits [3]. The conditions on the set family {R·,·} in

the protocol appear below.

Definition 4 (n-Evasive Set Family). Let n = n(k) = kc for some constant c > 0. An
ensemble of sets {Rα,k}α∈{0,1}∗,k∈N, where Rα,k ∈ {0, 1}k is said to be an n(k)-evasive set
family if the following conditions hold with respect to some negligible function µ(·):

Constructibility: For any k ∈ N, and any string α ∈ {0, 1}∗, the set Rα,k can be constructed
in time |α|2k3

. That is, there exists a TM MR such that M(1k, 1n) runs in time |α|2k3

and outputs all the elements of Rα,k.

Pseudorandomness: For all probabilistic 2O(k)-time Turing Machines M , and for all α ∈
{0, 1}∗, it holds that∣∣Pr[r ← Rα,k : M(α, r) = 1]− Pr[r ← {0, 1}k : M(α, r) = 1]

∣∣ < µ(k).

n-Evasiveness: Given n elements of Rα,k, it is hard for algorithms with advice α to find
an (n+ 1)-st element: for all probabilistic 2O(k)-time Turing Machines M , and for any
r1, ..., rn ∈ Rα,k,
Pr[M(α, r1, ..., rn) ∈ Rα,k \ {r1, ..., rn}] < µ(k).

Definition 5 (String Equivalence with respect to a prg G). Let G be a prg from t
bits to g(t) bits secure against algorithms which take time o(g(t)). Let φ(`) be any integer
function such that ` < φ(`) < 2`. Consider two strings α, α′ ∈ {0, 1}∗ and let ` = |α|+ |α′|.
The strings α, α′ are φ-equivalent with respect to G if there exist φ(`)-time Turing machines
M and M ′ which can each be described in space log(`), and such that

min

{
Pr[s← {0, 1}t : M(α;G(s)) = α′] ,

Pr[s← {0, 1}t : M ′(α′;G(s)) = α]

}
>

1

φ(`)

where the second input to M,M ′ denotes a random tape, and t = g−1(φ(`)).

14

Lemma 4.3. Suppose that G is a pseudo-random generator from t bits to 2t
ε

bits. Let
φ(`) = 2log2/ε(`). There exists an n-evasive set family for all n(k) ≤ kε/2, with the additional
property that if α and α′ have length at most `, and are φ-equivalent with respect to G, then
Rα,k = Rα′,k for all k > 2

√
log `.

Proposition 4.4. Suppose that 2k
ε
-strong trapdoor permutations and hash families exist

and that {Rα,k} is an n-evasive set family as in Lemma 4.3. Then NMCF (Protocol 4) is
non-malleable against n-fold parallel composition.

5 Multi-Party Computation

In this section we show how to obtain mpc protocols for arbitrary functionalities using any
simulatable coin-flipping protocol. Let a fixed-round protocol be one which always requires
the same number of rounds in every execution; we only discuss fixed-round protocols for
poly-time computable functions f . Beaver, Micali and Rogaway [6] (with further extensions
in [34]) shows that:

Theorem 5.1 ([6, 34]). Suppose that trapdoor permutations exist. For any function f ,
there is an O(1)-round protocol for computing f which is (n − 1)-secure against honest-
but-curious adversaries.

For malicious adversaries, Canetti, et al. [11] construct mpc protocols in the common
random string (crs) model which are (n − 1)-secure against adaptive adversaries (in fact,
their protocols achieve the stronger notion of universal composability). Because their goal is
security against adaptive adversaries, the round complexity of their protocols is proportional
to the depth of the circuit being evaluated. Nonetheless, many of the tools they develop (such
as uc commitment and zero-knowledge proofs) run in constant rounds. The following result
for the case of static adversaries is not explicit in [11], but follows directly from their work
(we use the expression abortable mpc to emphasize that in our setting the adversary may
abort the protocol):

Theorem 5.2 ([11]). Given an r-round protocol for mpc of a function f which is (n− 1)-
secure against static, honest-but-curious adversaries, there is an abortable mpc protocol for f
with O(r) rounds which is (n−1)-secure against static, malicious adversaries in the common
random string model, assuming the existence of trapdoor permutations and dense pkc.3

Combining the two previous theorems, we obtain:

Corollary 5.3. Suppose that trapdoor permutations and dense pkc exist. For any function
f , there is an O(1)-round (abortable) protocol for computing f in the crs model which is
(n− 1)-secure against static, malicious adversaries.

The key to using simulatable coin-flipping protocols in our setting — when no setup
assumptions are made and a crs is unavailable — is the following composition result:

3As in Remark 1, one should be able to remove the assumption of a dense pkc.

15

Proposition 5.4. Given a simulatable coin-flipping protocol ρ, and an abortable protocol π
for computing f in the crs model which is (n−1)-secure against static, malicious adversaries,
the natural composition of the two is a protocol for computing f with no setup assumptions
which is (n− 1)-secure against static, malicious adversaries.

Canetti [8] proved a much more general composition result of this sort for the case of
non-abortable mpc protocols. In fact, however, his proof applies in our context more or less
directly. Since our particular composition result is considerably simpler, we provide a proof
sketch here.

Proof. (sketch) Let stateA denote the internal view of A at the end of the round in which the
coin-flipping protocol ρ terminates (call this round r). We may imagine the adversary A as
the composition of two adversaries: A1 operates for r rounds and produces output stateA. A2

takes as input stateA, operates for the remainder of the protocol and produces the final view
viewA. We can now invoke the security of the coin-flipping protocol ρ to create a simulator
S1 which takes a string σ ∈ {0, 1}m as input and outputs variables σ′, state′A such that

σ ∈ {σ,⊥} (with overwhelming probability) and state′A
c≡ stateA when σ is indistinguishable

from random.
We may now define an adversary A′2 for the crs model as follows: upon receiving σ from

the trusted party, run S1 to produce σ′, state′A. If σ′ = ⊥, then broadcast “I abort” and
halt. Otherwise, run A2 on input state′A to complete the protocol. Note that an execution
of A′2 in the ideal model can be modified to yield a view and protocol outputs which are
indistinguishable from those generated by A in the real model.4 Finally, we invoke the
security of π to obtain a simulator S2 for the ideal model which emulates the behavior of A′2.
The output of the simulator S2 can be similarly modified to yield outputs indistinguishable
from those of A in the real model.

Our main result (Theorem 1.2) follows from Corollary 5.3, Proposition 5.4, and the
simulatable coin-flipping protocols given in Sections 3 and 4.

Removing the broadcast channel assumption Although we assume a broadcast chan-
nel, our techniques yield protocols with improved round complexity even when broadcast is
not available.

Suppose that all players are connected by secure channels. Then assuming a pre-existing
public-key infrastructure (PKI), one can build an O(t)-round authenticated Byzantine agree-
ment protocol (where up to t < n players are dishonest) [18]. If one is willing to allow the
possiblity of aborting the setup, one can in fact establish a PKI from scratch in O(t) rounds
[20]. Using that, Fitzi et al. [20] sketch a transformation from any r round mpc protocol
(with abort) in the broadcast model to an O(r + t)-round protocol which doesn’t assume
such a channel. Note that for any r = O(n) this yields linear complexity, so there is no need
to invoke our protocols which require stronger complexity assumptions. We obtain:

Corollary 5.5. For any poly-time function f , there exists a (n − 1)-secure protocol for
computing f in a synchronous network (without broadcast) which runs in O(n) rounds,
assuming trapdoor permutations and dense cryptosystems.

4The only difference is the “abort” message, which can simply be stripped from the transcript.

16

Goldwasser and Lindell [28] (independently of [20]) considered a further relaxation of
mpc in which some honest players may abort while others complete the protocol successfully
(those who complete the protcol are nonetheless guaranteed a correct result). This relaxation,
called designated abort since the adversary may choose which players abort, allows much
greater efficiency. Any r-round (abortable) mpc protocol secure in the broadcast model can
be transformed into a mpc protocol which doesn’t assume a broadcast channel and runs in
O(r) rounds [28]. Thus:

Corollary 5.6. For any poly-time function f , there exist (n− 1)-secure protocols for com-
puting f in a synchronous network without broadcast and with designated abort with the
following properties:

1. O(log n) rounds, assuming trapdoor permutations and dense cryptosystems.

2. O(1) rounds, assuming collision-free hashing, trapdoor permutations, and dense cryp-
tosystems secure against 2k

ε
-size circuits. The proof uses a non-black-box simulation.

Acknowledgments

We are grateful for helpful discussions with Cynthia Dwork, Shafi Goldwasser, Yehuda Lin-
dell, and Moni Naor, and for the comments from Eurocrypt ’03 referees. We also thank Boaz
Barak for personal communication clarifying the definitions and proofs of security in [2].

References

[1] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in constant number of rounds of
interaction. In Eighth ACM Symposium on Principles of Distributed Computing, pages 201–209, 1989.

[2] B. Barak. Constant-round coin-tossing with a man in the middle. In 43rd IEEE Symposium on the
Foundations of Computer Science, 2002. Preliminary full version available from the author’s web page.

[3] B. Barak and O. Goldreich. Universal arguments of knowledge. In 17th IEEE Conference on Compu-
tational Complexity, pages 194–203, 2002.

[4] D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology — CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 377–391. IACR, Springer-Verlag, Aug. 1991.

[5] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In Advances in Cryptology
— CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 589–590. IACR, Springer-
Verlag, Aug. 1989.

[6] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In 22nd ACM
Symposium on the Theory of Computing, pages 503–513, 1990.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In 20th ACM Symposium on the Theory of Computing, pages 1–10,
May 1988.

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–
202, 2000.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
IEEE Symposium on the Foundations of Computer Science, pages 136–147, Las Vegas, Nevada, Oct.
2001. IEEE.

17

[10] R. Canetti and M. Fischlin. Universally composable commitments. In Advances in Cryptology —
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 19–40. IACR, Springer,
2001.

[11] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party
secure computation. In 34th ACM Symposium on the Theory of Computing, pages 494–503, Montréal,
Québec, May 2002. ACM.

[12] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In 20th ACM
Symposium on the Theory of Computing, May 1988.

[13] B. Chor and M. Rabin. Achieving independence in logarithmic number of rounds. In 6th ACM Sympo-
sium on Principles of Distributed Computing, 1987.

[14] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In 18th ACM Symposium
on the Theory of Computing, pages 364–369, 1986.

[15] R. Cramer and I. Damg̊ard. Secure distributed linear algebra in a constant number of rounds. In
Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science. IACR,
Springer, 2001.

[16] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without interaction. In 33rd IEEE
Symposium on the Foundations of Computer Science, pages 427–436. IEEE, 1992.

[17] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Computing, 30(2):391–437,
2000.

[18] D. Dolev and H. Strong. Authenticated algorithms for byzantine agreement. SIAM J. Computing,
12(4):656–666, 1983.

[19] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In Advances in Cryptology
— CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 526–544. IACR, Springer-
Verlag, Aug. 1989.

[20] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable Byzantine agreement secure
against faulty majorities. In 21st ACM Symposium on Principles of Distributed Computing, pages
118–126, 2002.

[21] R. Gennaro. Achieving independence efficiently and securely. In ACM Symposium on Principles of
Distributed Computing, pages 130–136, 1995.

[22] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of verifiable secret sharing
and secure multicast. In 33rd ACM Symposium on the Theory of Computing, June 2001.

[23] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer, 1999.

[24] O. Goldreich. Secure multi-party computation. Electronic working draft, 2001.

[25] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for
protocols with honest majority. In 19th ACM Symposium on the Theory of Computing, pages 218–229.
ACM, May 1987.

[26] O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof systems. J. Cryptology,
7(1):1–32, 1994.

[27] S. Goldwasser and L. A. Levin. Fair computation of general functions in presence of immoral majority.
In Advances in Cryptology — CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages
77–93. Springer-Verlag, Aug. 1990.

[28] S. Goldwasser and Y. Lindell. Secure computation without a broadcast channel. In 16th International
Symposium on Distributed Computing (DISC), 2002.

18

[29] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to
round-efficient secure computation. In 41nd IEEE Symposium on the Foundations of Computer Science,
Redondo Beach, CA, Nov. 2000. IEEE.

[30] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in private com-
putations. SIAM J. Computing, 29(4), 2000.

[31] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. In Advances in
Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 171–189.
IACR, Springer, 2001.

[32] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology — CRYPTO ’91, volume
576 of Lecture Notes in Computer Science, pages 392–404. IACR, Springer-Verlag, Aug. 1991.

[33] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for NP using
any one-way permutation. J. Cryptology, 11(2), 1998.

[34] P. Rogaway. The Round Complexity of Secure Protocols. PhD thesis, MIT, 1991.

[35] A. C.-C. Yao. How to generate and exchange secrets. In 27th IEEE Symposium on the Foundations of
Computer Science, pages 162–167, 1986.

A Proof of Lemma 4.1

In this appendix, we expand on the proof sketch provided in the main body of the paper.
Barak’s protocol description and proof consists of three main pieces. He first describes a
protocol which is secure against uniform adversaries in a context of synchronized execu-
tions. Next, he modifies the protocol to tolerate non-uniform adversaries, and finally shows
how to handle non-synchronized executions. In our context, there are no non-synchronized
executions. The structure of the proof remains identical except for that point.

In Appendix A.1, we show how to construct n-evasive sets. Barak’s protocol uses an
evasive set R: it is difficult for a ppt algorithm M(r) to generate a string in R different from
its input r, even when r ∈ R. Our protocol will require the property to hold even when M
receives up to n elements1 of R as inputs.

The protocol itself is syntactically the same as the Barak protocol, and the proofs are
similar. In Appendix A.2 we state the modified protocol and sketch a proof of security
against uniform adversaries. Appendix A.3 gives some technical lemmas needed about non-
uniform constructions of evasive set families. Appendix A.4 gives a protocol and proof sketch
for security against non-uniform adversaries.

A.1 n-Evasive Sets

The main difference between the definition below and that of Barak is that no ppt algorithm
can guess an n+ 1-st element of the set, given any n elements.

Definition 6 (n-Evasive Set). Let n = n(k) = kc for some constant c > 0. An ensemble of
sets {Rk}k∈N, where Rk ∈ {0, 1}k is said to be an n(k)-evasive set if the following conditions
hold with respect to some negligible function µ(·):

19

Constructibility: For any k ∈ N, the set Rk can be constructed in time 2k
3
. That is, there

exists a TM MR such that M(1k, 1n) runs in time 2k
3

and outputs all the elements of
Rk.

Pseudorandomness: For all probabilistic polynomial time Turing Machines M , it holds that∣∣Pr[r ← Rk : M(r) = 1]− Pr[r ← {0, 1}k : M(r) = 1]
∣∣ < µ(k).

n-Evasiveness: Given n elements of Rk, it is hard for ppt algorithms to find an (n +
1)-st element: for all probabilistic polynomial time Turing Machines M , and for any
r1, ..., rn ∈ Rk, Pr[M(r1, ..., rn) ∈ Rk \ {r1, ..., rn}] < µ(k).

According to this definition, Barak’s original notion would be called 1-evasiveness.

Lemma A.1. Suppose that 2k
ε
-strong one-way functions exist. Then there exists a n-evasive

set for all n(k) ≤ kε/2.

Proof. The proof of this is very similar to the proof of Theorem 2.2 in [2], and we have
attempted to keep it syntactically close to the original. We sketch it here for completeness.
We will work with an intermediate security parameter t = kε. Note that n ≤

√
t. Let

f(t) = 2t
ε/2

, and let µ(t) = f(t)−1/3. Note that µ(·) is negligible.
Suppose that we choose a random subset S ∈ {0, 1}k with f(t) elements. We will show

that S is pseudorandom and evasive with high probability. We need only prove that these
two properties hold against Turing machines of size log t and running time tlog t since we are
interested, for now, only in uniform adversaries. Denote the set of such machines by Mt.
Note that |Mt| ≤ t.

Pseudorandomness: By the Chernoff inequality, for any Turing machine M , the proba-
bility (over the choice of S) that∣∣Pr[r ← S : M(r) = 1]− Pr[r ← {0, 1}k : M(r) = 1]

∣∣ > µ(t)

is very low (at most 2−Θ(f(t)1/3)). Thus, with overwhelming probability, S is pseudorandom
for all machines in Mt.

Evasiveness: For any fixed n strings α1, ..., αn ∈ {0, 1}k, and for any Turing machine M ,
the probability that M(α1, ..., αn) hits a random string α ∈ {0, 1}k is 2−k. Thus, the expecta-
tion over S of Pr[M(α1, ..., αn) ∈ S \{α1, ..., αn}] is at most f(t)/2k. By the Markov inequal-
ity, the probability over choice of S that M satisfies Pr[M(α1, ..., αn) ∈ S\{α1, ..., αn}] > µ(t)
is at most f(t)/(µ(t)2k) < f(t)2/2k. Taking a union bound over all sets of n strings and
all machines in Mt, we get that the set S satisfies n-evasiveness with probability at least
1 − t · f(t)n+2 · 2−k. Since f(t) = 2t

ε/2
, and n ≤

√
t, the probability of evasiveness is over-

whelming (roughly 1− 2k
1−ε

).

Constructibility: Under our assumptions, there exists a generatorG : {0, 1}t → {0, 1}2Ω(tε)

such that for any randomized circuit C of at most size T = 2Ω(tε),∣∣∣Pr
[
r ∈ {0, 1}T : C(r)

]
− Pr

[
s ∈ {0, 1}t : C(G(s))

]∣∣∣ ≤ 1/T (see, e.g. [23], page 85).

Given a particular candidate set S ∪ {0, 1}k of size f(k), we can use the prg to ver-
ify in deterministic time 22t that S satisfies pseudorandomness and evasiveness: For a

20

fixed machine M ∈ Mt, we can use the generator on a t-bit seed to evaluate the quan-
tity

∣∣Pr[r ← S : M(r) = 1]− Pr[r ← {0, 1}k : M(r) = 1]
∣∣ to within precision 2−Ω(tε), which

is much smaller than µ(t). There are 2t seeds to search, and so the whole test runs in
time 22t−1. Similarly, for each choice of n strings α1, ..., αn ∈ S, one can search through all
seeds of length t to evaluate Pr[M(α1, ...αn) ∈ S \ {α1, ...αn}]. Each such test takes time
2t · f(t) · poly(k), and so testing evasiveness requires f(t)n+1 · 2t · poly(k) < 22t−1 steps. The
total time for pseudrandomness and evasiveness is at most 22t.

We can now use the prg to find a set S satisfying the test above, by applying the prg to
a log(ck)-bit seed. This fools tests which run in time 2Θ((ck)ε), which is greater than 22t for
large enough constant c. Searching through all such seeds exhaustively yields a 2O(k) < 2k

3

time deterministic algorithm for constructing an n-evasive set.

Remark 2. The diagonalization in the previous proof applies even if we consider machines
with longer running time than klog k—it would even be reasonable to consider machines
with running time up to 2O(k). This observation will be useful for handling non-uniform
adversaries.

A.2 Proof of Security for Uniform Adversaries

The NMCF protocol for uniform adversaries is described in Protocol 5. The protocol is
identical to the original from [2], except for two changes:

1. We replace the evasive set with an n-evasive set.

2. The strong witness indistinguishable proof of knowledge and the zero-knowledge uni-
versal argument are replaced by parallel composable versions of the same primitives
(denoted PSWIPOK and PZKUAK).

Proposition A.2 (Uniform adversaries). Protocol NMCFuniform satisfies Definition 3
against Turing machines (specifically, adversaries with at most log k bits of advice).

Proof. Consider 2n parallel, synchronous executions of Protocol 5, with the adversary playing
the right party in half of the executions, and the left party in the other half, as in Figure 1.
We can view these as two synchronized executions of a single protocol, which itself consists of
n parallel executions of NMCFuniform. This new protocol has the same structure as Barak’s
original protocol, and the same proof applies ([2], Theorem 2.4).

The only difference is that in the original proof, Barak obtains a contradiction by pro-
ducing a polynomial time machine which violates the evasiveness property of the set Rk

(denoted Rn in [2]). In our case, the same argument produces a machine which, on input
r1, ..., rn ∈ Rk, produces r̃ ∈ Rk \ {r1, ..., rn} with non-negligible probability, thus violating
the n-evasiveness property of Rk.

We give a proof sketch here, but refer the reader to [2] for details.

Main simulator: The first step, given an adversary C, is to produce a simulator for the
view of C. The simulator gets inputs ρ1, ..., ρn, σ1, ...σn, and outputs a simulated view. The
simulator Ĉ ′ is described in Figure 2.

21

Protocol 5 (NMCFuniform(1k, 1m)). Parallel NM coin flipping for uniform adversaries.

Step L1 (Commitment to r1): Left party selects r1 ← {0, 1}m
and commits to it using a perfectly binding commitment scheme.
The commitment is denoted α1.

α1 = Com(r1)−−−−−−−−−−−−−−−→

Steps L2.2–L2.4,R2.1–R2.3 (Prove knowledge of r1): The left
party proves to the right party its knowledge of the value r1

committed by α1 using a PSWIPOK.

PSWIPOK of r1 ⇒

Step R3 (Send r2): The right party selects r2 ← {0, 1}m and
sends it.

r2←−−−−−−−−−−−−−−−

Step L4 (Send r) The left party sends r = r1 ⊕ r2. (No decom-
mitment string is revealed).

r = r1 ⊕ r2−−−−−−−−−−−−−−−→

Steps L5.1–5.9, R5.2–R5.10 (Prove that r = r1 ⊕ r2): The left
party proves, using a parallel zero-knowledge UKARG that ei-
ther r = r1 ⊕ r2 or r ∈ Rk, where Rk comes from an n-evasive
set.

PZKUAK
r = r1 ⊕ r2

or r ∈ Rk.

⇒

It is straightforward to show that the output of Ĉ ′ is indistinguishable for that of C, and
that ri = ρi for each i. We still need to show that with high probability, for each i ∈ [n],
either r̃i = σi (equivalently: r̃i = r̃1,i ⊕ r̃2,i) or r̃i ∈ {ρ1, ..., ρn}. We say the simulator Ĉ ′ is
broken if this condition is not satisfied.

Secondary simulator: In order to prove this, we construct another machine Ĉ ′′ with total
running time 2k whose output is indistinguishable from that of Ĉ ′ and hence from the view
of C in a real execution. A schematic description of Ĉ ′′ appears in Figure 3. Note that in
the figure, the notation r refers to the vector of strings r = (r1, ..., rn). Similarly for r1, r̃,
σ, etc.

Ĉ ′′ behaves like the simulator Ĉ ′, with one difference: in Step L4, the simulated party L
constructs Rk and sends n random members of Rk. Correspondingly, instead of simulating
the universal argument, it now runs the honest prover algorithm (total time 2O(k3), by the
prover efficiency condition of universal arguments).

In the output of Ĉ ′′, each of the strings r1, ..., rn is in Rk. Moreover, if the simulator Ĉ ′ is
broken with non-negligible probability, then with non-negligible probability, there exists some
j ∈ [n] such that the following all hold simultaneously:

1. r̃(j) 6∈ {r1, ..., rn}

2. r̃(j) 6= r̃1(j)⊕ r̃2(j).

3. The proof that either r̃(j) = r̃1(j)⊕ r̃2(j) or r̃(j) ∈ Rk passes verification.

Now the soundness property of the PZKUAK holds against 2k
5
-time adversaries, and

so, in particular, the statement proved by C in the last step of the simulation run by Ĉ ′′

must be true (note that no rewinding occurs during the PZKUAK). Now suppose we halt

22

the execution of Ĉ ′′ at the point where r̃ is computed. Up to this point, Ĉ ′′ would need
only a polynomial number of steps, if r1, ..., rn ∈ Rk were provided by some outside source.
This means that we have a ppt algorithm that violates the n-evasiveness property of Rk.
Hence, the simulator Ĉ ′ is never broken with non-negligible probability, and so Definition 3
is satisfied.

Input to Ĉ ′: ρ1, ..., ρn, σ1, ..., σn

Simulated L Simulated C Simulated R

ri ← {0, 1}m,∀i ∈ [n]
r1 = (r1,1, ..., r1,n) Com(r1)−−−−−−−−−−−−−−−→

Com(r̃1)−−−−−−−−−−−−−−−→
PSWIPOK of r1 ⇒ PSWIPOK of r̃1 ⇒ 	 Extract r̃

r̃2 = r̃1 ⊕ σ←−−−−−−−−−−−−−−− r̃2,i = r̃1,i ⊕ σi
r2←−−−−−−−−−−−−−−−

ri = ρi,∀i ∈ [n] r = ρ−−−−−−−−−−−−−−−→
r̃−−−−−−−−−−−−−−−→

	 Simulate proof Simulated
PZKUAK: ∀i
ri = r1,i ⊕ r2,i

or ri ∈ Rk

⇒ PZKUAK: ∀i
r̃i = r̃1,i ⊕ r̃2,i

or r̃i ∈ Rk

⇒

Figure 2: Simulator algorithm Ĉ ′ (polynomial time) for uniform adversaries.

A.3 Evasive Families for Non-Uniform Adversaries

For non-uniform adversaries, we extend the definition of evasive sets to include pseudo-
randomness and evasiveness against Turing machines that receive a particular string α as
advice. Moreover, the time these Turing machines may take is exponential in k, instead
of simply polynomial. Moreover, in the proof we will diagonalize against machines with a
super-logarithmic (but sub-polynomial) description size. This will be useful below.

Definition 7 (n-Evasive Set Family). Let n = n(k) = kc for some constant c > 0. An
ensemble of sets {Rα,k}α∈{0,1}∗,k∈N, where Rα,k ∈ {0, 1}k is said to be an n(k)-evasive set
family if the following conditions hold with respect to some negligible function µ(·):

Constructibility: For any k ∈ N, and any string α ∈ {0, 1}∗, the set Rα,k can be constructed
in time |α|2k3

. That is, there exists a TM MR such that M(1k, 1n) runs in time |α|2k3

and outputs all the elements of Rα,k.

Pseudorandomness: For all probabilistic 2O(k)-time Turing Machines M , and for all α ∈
{0, 1}∗, it holds that

∣∣Pr[r ← Rα,k : M(α, r) = 1]− Pr[r ← {0, 1}k : M(α, r) = 1]
∣∣ <

µ(k).

23

Input to Ĉ ′′: σ1, ..., σn

Simulated L Simulated C Simulated R

ri ← {0, 1}m,∀i ∈ [n]
r1 = (r1,1, ..., r1,n) Com(r1)−−−−−−−−−−−−−−−→

Com(r̃1)−−−−−−−−−−−−−−−→
PSWIPOK of r1 ⇒ PSWIPOK of r̃1 ⇒ 	 Extract r̃

r̃2 = r̃1 ⊕ σ←−−−−−−−−−−−−−−− r̃2,i = r̃1,i ⊕ σi
r2←−−−−−−−−−−−−−−−

Use 2k
3

steps:
ri ← Rk,∀i ∈ [n] r−−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−−→
Use 2O(k3) steps PZKUAK: ∀i

ri = r1,i ⊕ r2,i

or ri ∈ Rk

⇒ PZKUAK: ∀i
r̃i = r̃1,i ⊕ r̃2,i

or r̃i ∈ Rk

⇒

Figure 3: Second simulator algorithm Ĉ ′′ (time 2O(k3)) for unifrom adversaries

n-Evasiveness: Given n elements of Rα,k, it is hard for algorithms with advice α to find
an (n+ 1)-st element: for all probabilistic 2O(k)-time Turing Machines M , and for any
r1, ..., rn ∈ Rα,k, Pr[M(α, r1, ..., rn) ∈ Rα,k \ {r1, ..., rn}] < µ(k).

As in [2], diagonalizing against machines with advice α is no harder than diagonalizing
against machines with no advice.

Lemma A.3. Suppose that 2k
ε
-strong one-way functions exist. Then there exists a n-evasive

set family for all n(k) ≤ kε/2.

A.3.1 Equivalent Advice Strings.

Remark 3. The details in this section are based on Barak’s original proof, as elaborated in
personal communication.

We will need an additional property from the evasive set families for the proof: it should
be that if a string α can be generated from a string α′ in polynomial time, then the set
collections {Rα,k}k∈Nand {Rα′,k}k∈N should be equal. Unfortunately, this is tricky to make
precise and so instead we defines a slightly looser notion of equivalence which captures the
informal one.

Definition 8 (String Equivalence). Consider two strings α, α′ ∈ {0, 1}∗ and let ` = |α|+
|α′|. The strings α, α′ are φ(·)-equivalent for some function φ(`) (typically, super-polynomial
and sub-exponential) if there exist φ(`)-time Turing machines M and M ′ which can each be
described in space log(`), and such that

Pr[c← {0, 1}φ(`) : M(α; c) = α′] >
1

φ(`)
and Pr[c← {0, 1}φ(`) : M ′(α′; c) = α] >

1

φ(`)

24

For the purposes of this proof, we will always use φ(`) = 2log2/ε `. This is super-polynomial,
but less than 2`

δ
for all δ > 0. Given two particular strings α, α′, determining with absolute

certainty if they are equivalent in the sense above requires searching through all possible
random inputs for any two candidate machines M,M ′ (there are up to 2φ(`) possibilities).
This may require too much time. However, we can instead use a particular pseudo-random
generator to get a similar notion which is easier to verify.

Definition 9 (String Equivalence with respect to a prg G). Let G be a prg from t
bits to g(t) bits secure against alogrithms which take time o(g(t)). Let φ(`) be any integer
function such that ` < φ(`) < 2`. Consider two strings α, α′ ∈ {0, 1}∗ and let ` = |α|+ |α′|.
The strings α, α′ are φ-equivalent with respect to G if there exist φ(`)-time Turing machines
M and M ′ which can each be described in space log(`), and such that

Pr[s← {0, 1}t : M(α;G(s)) = α′] >
1

φ(`)
and Pr[s← {0, 1}t : M ′(α′;G(s)) = α] >

1

φ(`)

where the second input to M,M ′ denotes a random tape, and t = g−1(φ(`)).

Remark 4.

1. When g(t) = 2t
ε
, and φ(`) = 2log2/ε(`), we set t = log2/ε2(`) in the definition above.

2. The notion of equivalence above is not an equivalence relation in the usual sense. In
particular, it is symmetric and reflexive, but not transitive.

Lemma A.4. Let G be a prg from t bits to 2t
ε

bits, and let φ(`) = 2log2/ε(`). One can tell in

deterministic time 2g
−1(φ(`)) = 2O(log2/ε2 (`)) whether or not two strings α, α′ are φ-equivalent,

and also find the shortest string which is equivalent to α.

Proof. By exhaustive search, one can check equivalence of two strings α, α′ in deterministic

time 2` · 2t · `log ` = 2O(log2/ε2 `) (there are ` candidates for each of M and M ′, 2t seeds and
each run of a machine takes φ(`) time). Similarly, given a single string α′ of length `, we can
find the shortest equivalent string by first running all machines M of size less than log ` on
all possible seeds to obtain a candidate set of strings α′, and then testing each of them for

equivalence. The resulting algorithm runs still runs in time 2O(log2/ε2 `).

Lemma A.5. Suppose that 2k
ε
-strong one-way functions exist, and let φ(`) = 2log2/ε(`).

There exists a n-evasive set family for all n(k) ≤ kε/2, with the additional property that
if α and α′ have length at most `, and are φ-equivalent with respect to G, then Rα,k = Rα′,k

for all k > 2
√

log `.

Proof. We can modify the construction of Lemma A.1 and Lemma A.3 as follows: the
constructing machine, when it gets inputs α and 1k, first checks if ` = |α| ≤ 2log2 k (that
is, check to ensure that k > 2

√
log `). If ` is small enough, then first find the shortest α′

equivalent to α. This takes time 2O(log2/ε `) � 2k. Now construct Rα′,k as before, with slightly
modified parameters: we diagonalize against machines with running time 2k+1 instead of 2k,
description size 2

√
log k instead of log k, and using negligible error 1/2µ(k) instead of 1/µ(k).

25

This modified construction algorithm has essentially the same running time as the original
(that is, it remains 2O(k)). Moreover, it trivially guarantees thatRα,k = Rα′,k for all k ≥ 2

√
log `

when α and α′ are equivalent.
We must still prove that the new set family satisfies pseudorandomness and evasiveness.

Suppose that there is a 2k-time machine M described by log k bits with advice α. We would
like to describe an equivalent machine M ′ which uses advice α′ instead. Let Mα,α′ be the
TM of description size log ` that transforms α into α′ with probability at least 1/φ(`). Given
the machine Mα,α′ , the string α′ and the generator G, there are at most φ(`) possibilities
for α, and hence we could specify α using only log φ(`) additional bits. This means that we
can construct a new machine M ′ which behaves identically to M , but which has description
size log k + logφ(`) < 2

√
log k and which takes α instead of α′ as advice. The machine M ′

also takes an additional φ(`) steps, but this is much less than 2k, so the total time remains
under 2k+1. The diagonalization used to construct Rα′ tolerates machines with this advice
and running time. Thus pseudorandomness and evasiveness hold for M ′ and for M .

A.4 Security Against Non-uniform Adversaries

As above, the NMCF protocol for non-uniform adversaries (Protocol 6) is identical to
Barak’s original protocol, except that we use a n-evasive set family, and the proof systems
are instantiated with parallel-composable protocols. Note that PSWIUAK here refers to a
strong witness-indistinguishable universal argument of knowledge [3].

Proposition A.6. Protocol NMCF (Protocol 6) satisfies Definition 3.

Proof. The general outline of this proof is the same as for Proposition A.2. For any adversary
(circuit family) C, we first construct a simulator Ĉ ′, described in Figure 4. As above, the
Ĉ ′ produces a view which is computationally indistinguishable from a real execution, and
ensures that r1,i ⊕ r2,i = ρi and r̃1,i ⊕ r̃2,i = σi. The difficulty is to prove that with high
probability the right-hand execution will produce outputs r̃i ∈ {σi} ∪ {ρ1,, ρn}.

For this we construct a secondary simulator Ĉ ′′ (Figure 5).

1. The simulated honest parties L,R actually commit to the description of the adversary
desc(C) instead of the dummy value 0k (that is, αi = β̃i = desc(C) for all i).

2. The simulated honest parties require poly(klog k) random coins in order to commit to
and prove knowledge of αi and β̃i. They obtain these coins by running a generator G
mapping t bits into 2t

ε
bits on input seeds of length O(log2/ε k).

3. The simulator also rewinds C to extract its committed values α̃i and βi (these strings
may be up to klog k bits long). Finally, Ĉ ′′ constructs the sets Rα̃i‖β̃i,k and selects

ri ← Rα̃i‖β̃i,k. Note that none of the proofs performed by Ĉ ′′ need to be simulated—
the statements are always true.

The total time taken by Ĉ ′′ is 2O(k3).
The same argument as for uniform adversaries shows that if C can break the main

simulation Ĉ ′ with non-negligible probability—that is, if r̃i 6∈ {σi} ∪ {ρ1,, ρn}—then with

26

Protocol 6 (NMCF (1k, 1m)). Parallel NM Coin Flipping

Steps L,R0.1.x (Left commits to α): Left party chooses a hash
function h1, and sends h1 and y1 = Com(h1(0k)). It then proves
using a PSWIUAK that it knows a value α of length at most
klog k such that y1 = Com(h1(α)).

h1, y1 = Com(h1(0k))−−−−−−−−−−−−−−−→
PSWIUAK of
α, s s.t. y1 =
Com(h1(α); s)

⇒

Steps L,R0.2.x (Right commits to β): Left party chooses a hash
function h2, and sends h2 and y2 = Com(h2(0k)). It then proves
using a PSWIUAK that it knows a value β of length at most klog k

such that x y1 = Com(h1(β)).

h1, y1 = Com(h1(0k))←−−−−−−−−−−−−−−−
⇐ PSWIUAK of

α, s s.t. y1 =
Com(h1(α); s)

Step L1 (Commitment to r1): Left party selects r1 ← {0, 1}m
and commits to it using a perfectly binding commitment scheme.
The commitment is denoted α1.

α1 = Com(r1)−−−−−−−−−−−−−−−→

Steps L2.2–L2.4,R2.1–R2.3 (Prove knowledge of r1): The left
party proves to the right party its knowledge of the value r1

committed by α1 using a PSWIPOK.

PSWIPOK of r1 ⇒

Step R3 (Send r2): The right party selects r2 ← {0, 1}m and
sends it.

r2←−−−−−−−−−−−−−−−

Step L4 (Send r) The left party sends r = r1 ⊕ r2. (No decom-
mitment string is revealed).

r = r1 ⊕ r2−−−−−−−−−−−−−−−→

Steps L5.1–5.9, R5.2–R5.10 (Prove that r = r1 ⊕ r2): The left
party proves, using a parallel zero-knowledge UKARG that ei-
ther r = r1 ⊕ r2 or r ∈ Rα‖β,k, where Rα‖β,k comes from an
n-evasive set family.

PZKUAK
r = r1 ⊕ r2

or r ∈ Rα‖β,k.

⇒

27

non-negligible probability, Ĉ ′′ produces an accepting view such that r̃i 6∈ {σi} ∪ {ρ1,, ρn},
but nonetheless r̃i ∈ Rα̃i‖β̃i,k.

We claim this contradicts the n-evasiveness property. One can obtain each of the strings
αi‖βi and α̃i‖β̃i from the string desc(C) as follows: first guess the seeds s, s̃ used by L and
R, then simulate L, R and C using those coins, and run the extractor for the PSWIUAK to
extract α̃ and β. This procedure takes time poly(klog k) by the extraction properties of the
PSWIUAK. Since the seeds used by L,R have log2/ε(k) bits, the whole procedure succeeds

with probability 2−O(log2/ε k). Hence, the strings αi‖βi and α̃i‖β̃i are φ-equivalent with respect
to G, and thus Rαi‖βi,k = Rα̃i‖β̃i,k. Hence, any adversary C which breaks the simulator Ĉ ′

implies the existence of a machine which breaks the evasiveness property of the set family
R·,·.

Input to Ĉ ′: ρ1, ..., ρn, σ1, ..., σn

Simulated L C Simulated R
h1,i, y1,i = Com(h1,i(0k))−−−−−−−−−−−−−−−−−−→

PSWIUAK of α s.t.
y1,i = Com(h1,i(αi))

⇒ h̃1,i, ỹ1,i = Com(h̃1,i(α̃i))−−−−−−−−−−−−−−−−−−→
PSWIUAK of α̃ s.t.
ỹ1,i = Com(h̃1,i(α̃))

⇒

h2,i, y2,i = Com(h2,i(β))←−−−−−−−−−−−−−−−−−−
⇐ PSWIUAK of β s.t.

y2,i = Com(h2,i(βi))

h̃2,i, ỹ2,i = Com(h̃2,i(0k))←−−−−−−−−−−−−−−−−−−
⇐ PSWIUAK of β̃ s.t.

ỹ2,i = Com(h̃2,i(β̃i))

ri ← {0, 1}m,∀i ∈ [n]
r1 = (r1,1, ..., r1,n) Com(r1)−−−−−−−−−−−−−−−→

Com(r̃1)−−−−−−−−−−−−−−−→
PSWIPOK of r1 ⇒ PSWIPOK of r̃1 ⇒ 	 Extract r̃

r̃2 = r̃1 ⊕ σ←−−−−−−−−−−−−−−− r̃2,i = r̃1,i ⊕ σi
r2←−−−−−−−−−−−−−−−

ri = ρi,∀i ∈ [n] r = ρ−−−−−−−−−−−−−−−→
r̃−−−−−−−−−−−−−−−→

	 Simulate proof Simulated
PZKUAK: ∀i
ri = r1,i ⊕ r2,i

or ri ∈ Rα‖β,k

⇒ PZKUAK: ∀i
r̃i = r̃1,i ⊕ r̃2,i

or r̃i ∈ Rα̃‖β̃,k

⇒

Figure 4: Simulator algorithm Ĉ ′ (polynomial time) for non-uniform adversaries

28

Input to Ĉ ′′: σ1, ..., σn

Simulated L C Simulated R

αi = desc(C), ∀i

s← {0, 1}log2/ε k

c = G(s)

h1,i, y1,i = Com(h1,i(αi)−−−−−−−−−−−−−−−−−−−→
using coins c

PSWIUAK of α s.t.
y1,i = Com(h1,i(αi))
using coins c.

⇒

h̃1,i, ỹ1,i = Com(h̃1,i(α̃i))−−−−−−−−−−−−−−−−−−→
PSWIUAK of α̃ s.t.
ỹ1,i = Com(h̃1,i(α̃))

⇒

h2,i, y2,i = Com(h2,i(β))←−−−−−−−−−−−−−−−−−−
⇐ PSWIUAK of β s.t.

y2,i = Com(h2,i(βi))

h̃2,i, ỹ2,i = Com(h̃2,i(βi))←−−−−−−−−−−−−−−−−−−−−
using coins c̃

⇐ PSWIUAK of β̃ s.t.
ỹ2,i = Com(h̃2,i(β̃i))
using coins c̃

βi = desc(C),∀i
s̃← {0, 1}log2/ε k

c̃ = G(s̃)

ri ← {0, 1}m,∀i ∈ [n]
r1 = (r1,1, ..., r1,n) Com(r1)−−−−−−−−−−−−−−−→

Com(r̃1)−−−−−−−−−−−−−−−→
PSWIPOK of r1 ⇒ PSWIPOK of r̃1 ⇒ 	 Extract r̃

r̃2 = r̃1 ⊕ σ←−−−−−−−−−−−−−−− r̃2,i = r̃1,i ⊕ σi
r2←−−−−−−−−−−−−−−−

Use 2k
3

steps:
ri ← Rα‖β,k,∀i ∈ [n] r−−−−−−−−−−−−−−−→

r̃−−−−−−−−−−−−−−−→
Use 2O(k3) steps PZKUAK: ∀i

ri = r1,i ⊕ r2,i

or ri ∈ Rαi‖βi,k

⇒ PZKUAK: ∀i
r̃i = r̃1,i ⊕ r̃2,i

or r̃i ∈ Rα̃i‖β̃i,k

⇒

Figure 5: Second simulator algorithm Ĉ ′′ (time 2O(k3)) for non-uniform adversaries

29

Contents

1 Introduction 1

2 Definitions 3
2.1 Network Model . 3
2.2 Secure Multi-Party Computation and Coin-Flipping 4

3 Simulatable Coin-Flipping in O(log n) Rounds 6
3.1 From Scheduled Proofs to Simulatable Coin-Flipping 9

4 Simulatable Coin Flipping in Constant Rounds 10
4.1 Parallel Composability of Barak’s Coin-Flipping Protocol 13

5 Multi-Party Computation 15

A Proof of Lemma 4.1 19
A.1 n-Evasive Sets . 19
A.2 Proof of Security for Uniform Adversaries . 21
A.3 Evasive Families for Non-Uniform Adversaries 23

A.3.1 Equivalent Advice Strings. 24
A.4 Security Against Non-uniform Adversaries 26

30

