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Database Privacy

¢ Census problem
= Individuals provide information

= Census office publishes sanitized records
o Allow extraction of global statistics
e Protect individuals' privacy

* Inherent Privacy vs Utility Tradeoff
= Extremes: Publish nothing, publish everything

¢ Goals:

= Find a middle path: both privacy and utility

» Hope: change the way privacy is approached
e Framework for meaningful comparison of techniques
e Encourage debate of what "privacy” means




Database Privacy
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+ Utility:
= Users can extract "global statistics”
e Means, variances, approximate clusters, ...

= Proof by algorithm + analysis
* Privacy:

= What is required?

= How to prove i1?

Users:
Researchers,
Companies,
Government,




Outline

¢ What do we mean by "Privacy"?

= Geometric abstraction
= Privacy breach = “isolation”

+ Example Sanitizations

¢ Conclusions and Future Work




Current solutions

+ Extensively studied in statistics, data mining

= Non-interactive: Suppress/aggregate cells,
perturb data, synthesize new data, ...

« Interactive: monitor queries, perturb outputs

* Focus on utility

¢ Privacy claims unsatisfying *

s Ad-hoc or unclear definitions

» Unexpected leaks, e.g.
e Erasure / refusal to answer can reveal info
e Noise can cancel in interactive queries

s Debate / criticism is difficult

* Recent exceptions: DNO3,DNO4 ,EGSO3




Cryptographer's Approach

First:
+ Define "privacy” in this context

= "Privacy” is an overloaded term
= How can we get a handle on it?

Second:

¢ Understand what kinds of information
do - and don't - breach privacy




What do WE mean by privacy?

¢ Privacy is an overloaded term
= What does it mean for databases?

¢ Intuition:
privacy = blending into the crowd

* [Ruth Gavison] "Protection from being
brought to the attention of others”
= Inherently valuable
= Attention invites further privacy loss
= Also "chilling effect” on rights and speech

* Appealing definition; can be converted into
a precise mathematical statement
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A Geometric Abstraction

+ Database = vectors in metric space (e.g RY)

= Points are unlabeled
You are your collection of attributes

+ Distance is everything
= Points are similar if and only if they are close

* Highly abstracted version of problem

=« If we can't understand this,
we can't understand real life

= Assumption implicit in current literature

* For this talk: Rd, with L, distance and large d
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A Geometric Abstraction

Alice Original Sanitized Users:
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Charts, tables, etc

n points in R released by census

(non-interactive)




The Adversary as Isolator - Intuition

Alice Original Sanitized
Data

Data
b Sariizer > Adversary

Auxiliary Information

Adversary outputs a point g € R

q “isolates"” an original DB point x, if it is much
closer to x than to x's near neighbors

q fails to isolate x if q looks as much like
x's neighbors as looks like x itself

Tightly clustered points
have smaller radius of isolation
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Isolation - the definition

I(Sanitized DB,aux) = g

x is isolated if B(q,cd) contains fewer than T other
points from Original DB

T-radius of x - distance to its Tth-nearest neighbor
x is "safe" if 8, > (T-radius of x) / (c-1)

B(q,cd,) contains x's entire T-neighborhood

C - privacy parameter; eg, 4




Requirements for the sanitizer

+ Intuition: side info may allow isolating points apriori
= Emulate definition of semantic security of encryption

Sanitization breaches privacy if giving the
adversary access to the SDB considerably increases
its probability of success

* Forgiving def: "Considerably” ~ 1/n'/2, or 1/1000

+ Roughly: For a particular distrib. D on DE and aux:
Vv I, 3"simulator” I', w. high pr.over D,

Pr[I( ,aux) isolates pt.]
— Pr[T'(aux) isolates pt.] < €

* Framework for measuring sanitization methods
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What About Utility?

+ "Pointwise" approach: we prove that specific
functionalities can be learned

= averages, medians, clusters, _
singular value decomposition,... For now...

* Goal: large class of interesting tests for
which there are good approximation
procedures using sanitized data
= Work in progress

= Ideal: everything learnable with "noise” is
learnable privately




Outline

+ What do we mean by "Privacy"?

+ Example Sanitizations (non-interactive)

= Recursive Histogram - privacy
= Density-based Perturbation - utility =
» Hybrid: Cross-training

Use local

¢ Conclusions and Future Work density




Histogram Sanitization

e U=[-1,1]°
= d-dim cube, side = 2

¢ Cut into 29 subcubes
= split along each axis
= subcubes have side =1

* For each subcube
if number of RDB points > 2T
then recurse
¢ Output: list of cells and counts

E.g. "The subdivisions were ... .
Cell 1 had 3 points, Cell 2 had 2 points, ..."




Histogram Sanitization

Theorem:
if database points uniform in [-1,1]¢
= Pr[ I(SDB) c-isolates] < 2-¢d),  where c = 10 (?)
3 3|1

¢ Strong assumptions! |9

= Specific distribution 3

= No auxiliary information
+ Assumptions can be relaxed...




Histogram Sanitization

Theorem: Recursive histograms are safe
if database points uniform in [-1,1]¢
= Pr[ I(SDB) c-isolates] < 2-d), where ¢ = 100"

¢ If n=2°1, proof is simple:
Let adversary pick q,
s = side-length of sub-cube C of g
Dist. o nearest point = O(s d%) w.h.p.

Increasing the distance by ¢
captures C and most of its parent cell

Parent of C contains 2T points
= g doesn't c-isolate anyone




Histogram Sanitization

Theorem: Recursive histograms are safe
if database points uniform in [-1,1]¢
= Pr[ I(SDB) c-isolates] < 2%, where c =~ 100"
¢ If n=2°), proof is simple

¢ If n= 2%, proof is harder...




For Very Large Values of n

¢ Wlog can switch to ball adversaries: (q,r)

I wins if B(q,r) contains at least one RDB point and
B(qg,cr) contains fewer than T RDB points

¢ Define a probability density f(x) that
captures adversary's view of the RDB

Ball Lemma: To win with probability €, T needs:
Pr'f[B(q,r')] > e/n
Pr¢[B(q.cr)] <2T/n

Pr[B(q.r)] / PrB(q.cr)] > /2T
+ Bound € by bounding ratio by 2-%(d




Bounding Pr([B(q,r)]/Pr¢B(q,cr)]

Inflation Lemma: If B = ball with small™ radius,
C = cube [-1,1]9,

Vol(BNC) < 2-90d)
Vol(2B N C)
Proof (outline):

+ Approximate uniform Q
*

over ball by Gaussian
¢ Crunch numbers

(Nicer proof?)

* Small = Bd=side-length(C), where g~ 1/60




Bounding Pr([B(q,r)]/Pr¢B(q,cr)]

* f(x) = (ns/n) (1 / Vol(C))
= fraction of RDB points landing in cell C, spread
uniformly within C
¢ If ris small, Inflation Lemma says that big
ball captures exp(d) more mass in each
subcube it touches than small ball

Thus,

= Total mass /
increases J
exponentially

= Ratio is small <




Bounding Pr([B(q,r)]/Pr¢B(q,cr)]

* f(x) = (ns/n) (1 / Vol(C))
= fraction of RDB points landing in cell C, spread
uniformly within C
¢ If r is small, Inflation Lemma says that
bigger ball captures exp(d) more mass in
each subcube than smaller ball

¢ If ris large, the small ball captures nothing
or the bigger ball captures parent cube

+ Either way isolation cannot occur
(c ~ 100? 10?)




Relaxing Assumptions

¢ Extends to many interesting cases
non-uniform but bounded-ratio density fns
isolator knows constant fraction of attribute vals
isolator knows lots of RDB points

isolation in few attributes
(very weak bounds)

¢ Can be adapted to "round” distributions
balls, spheres, mixtures of Gaussians,
with effort; [work in progress]




Outline

+ What do we mean by "Privacy"?

+ Example Sanitizations (non-interactive)
o Recursuve Histogram - prlvacy

¢ Conclusions and Future Work




Round Sanitizations

* The privacy of x is linked to its T-radius
— Randomly perturb it in proportion to its T-radius

* X' = San(x) € B(x,T-rad(x))
= alternatively, N(x, T-rad(x)), d-dim Gaussian

¢ Intuition:
= Blend x in with its crowd

= Adding random noise with
mean zero 1o X,
= means, correlations should
be preserved.




Round Perturbations Provide Utility

Distributional/
Worst-case

Objective

Assumptions

Result

Worst-case

Find K clusters
minimizing largest
diameter

Diameter increases by a
factor of 3

Distributional

Find k maximum
likelihood clusters

Mixture of k
Gaussians

Spectral clustering is
correct w.h.p. when
centers are well
separated




Privacy for n Sanitized Points?

¢ Given n-1 points in the clear, the probability
of isolating the nth is exp(-Q(d))

¢ Intuition for extension to n points is wrong!

= Privacy of x,given x, and n-1 points in the clear

does not imply privacy of x, given all n sanitized
points!

= Sanitization of other points reveals information
about x,

= Worry is for safety of the reference point (the
neighbor defining the T-radius), not the principal




Combining the Two Sanitizations

¢ Partition RDB into two sets A and

¢ Cross-training
= Compute histogram sanitization for
= V€ A:p, = side length of C containing v
= Output




Cross-Training Privacy

* Privacy for B: only histogram information
about B is used

* Privacy for A: harder version of proof for
histograms
= so far, proof works only for |A| = 20(d)

¢+ Immediate Next Goals:

= Extend privacy proofs to more distributions

= Not all utility results have carried over
e Spectral techniques work; not all clustering does




Outline

+ What do we mean by "Privacy"?

v Example Sanitizations (non-interactive)
= Recursive Histogram - privacy
= Density-based Perturbation - utility
» Hybrid: Cross-training

¢ Conclusions and Future Work




Future Research (Abstract Model)

¢ This talk: Abstract Model

= Many interesting questions remain
= Strengthen existing results?

¢ Work in Progress
at [DWNC( +]

e Impossibility of all-purpose sanitizers

e Interesting utilities that have no privacy-preserving
sanitization (cf. why secure protocols don't suffice)

= [DuSm "‘]

e Low-dimensional data: combining our perspective with
techniques from statistics ("density estimation")

= [NiSm +]

e Extending approach to categorical data (no distance?)




What About the Real World?

* Lessons from the abstract model
= We can prove meaningful statements
» High dimensionality is our friend
e Treat data as whole (not component-wise)
= E.g.: we can bound re-identification risk

¢ Moving towards real data

= Problem: Why Euclidean distance?
e Rescale coordinates, use other metrics...
e Addressed by follow-up work
e Easy..

= Problem: Auxiliary information
e What happens when adversary knows other databases?
e Hard (provably impossible in general)




What About the Real World?

¢ Hard to provide good sanitization in the
presence of arbitrary auxiliary info
= Provably impossible in general
= Suggests we heed to control aux

¢ How to quantify what adversary knows?
= "Smoothness"?

+ How should we redesign the world?
= Leave data in hands of users
= Dwork: "Our Data, Ourselves”
= Aggarwal et al: "Privacy for the Paranoids”




Conclusions

+ Goals:
= Cryptographer's approach to database privacy
= Proposed formalism for abstract problem

= Concrete sanitizations, results
e Statistical / algorithmic techniques

¢ Many challenges remain
= Bring approach closer to real world

¢ Merits attention of wider community
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