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Abstract. We continue a line of research initiated in [10, 11] on privacy-
preserving statistical databases. Consider a trusted server that holds a
database of sensitive information. Given a query function f mapping
databases to reals, the so-called true answer is the result of applying
f to the database. To protect privacy, the true answer is perturbed by
the addition of random noise generated according to a carefully chosen
distribution, and this response, the true answer plus noise, is returned
to the user.

Previous work focused on the case of noisy sums, in which f =P
i g(xi), where xi denotes the ith row of the database and g maps

database rows to [0, 1]. We extend the study to general functions f ,
proving that privacy can be preserved by calibrating the standard devi-
ation of the noise according to the sensitivity of the function f . Roughly
speaking, this is the amount that any single argument to f can change its
output. The new analysis shows that for several particular applications
substantially less noise is needed than was previously understood to be
the case.

The first step is a very clean characterization of privacy in terms of
indistinguishability of transcripts. Additionally, we obtain separation re-
sults showing the increased value of interactive sanitization mechanisms
over non-interactive.

1 Introduction

We continue a line of research initiated in [10, 11] on privacy in statistical
databases. A statistic is a quantity computed from a sample. Intuitively, if the
database is a representative sample of an underlying population, the goal of
a privacy-preserving statistical database is to enable the user to learn proper-
ties of the population as a whole while protecting the privacy of the individual
contributors.

We assume the database is held by a trusted server. On input a query function
f mapping databases to reals, the so-called true answer is the result of applying f
to the database. To protect privacy, the true answer is perturbed by the addition
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of random noise generated according to a carefully chosen distribution, and this
response, the true answer plus noise, is returned to the user.

Previous work focused on the case of noisy sums, in which f =
∑

i g(xi),
where xi denotes the ith row of the database and g maps database rows to [0, 1].
The power of the noisy sums primitive has been amply demonstrated in [6], in
which it is shown how to carry out many standard datamining and learning tasks
using few noisy sum queries.

In this paper we consider general functions f mapping the database to vectors
of reals. We prove that privacy can be preserved by calibrating the standard
deviation of the noise according to the sensitivity of the function f . This is the
maximum amount, over the domain of f , that any single argument to f , that is,
any single row in the database, can change the output.

We begin by defining a new notion of privacy leakage, ε-indistinguishability.
An interaction between a user and a privacy mechanism results in a transcript.
For now it is sufficient to think of transcripts corresponding to a single query
function and response, but the notion is completely general and our results will
handle longer transcripts.

Roughly speaking, a privacy mechanism is ε-indistinguishable if for all tran-
scripts t and for all databases x and x′ differing in a single row, the probability
of obtaining transcript t when the database is x is within a (1 + ε) multiplica-
tive factor of the probability of obtaining transcript t when the database is x′.
More precisely, we require the absolute value of the logarithm of the ratios to be
bounded by ε. In our work, ε is a parameter chosen by policy.

We then formally define the sensitivity S(f) of a function f . This is a quantity
inherent in f ; it is not chosen by policy. Note that S(f) is independent of the
actual database.

We show a simple method of adding noise that ensures ε-indistinguishability
of transcripts; the noise depends only on ε and S(f), and is independent of the
database and hence of its size. Specifically, to obtain ε-indistinguishability it
suffices to add noise according to the following distribution: Pr[y] ∝ e−ε|y|/S(f).

The extension to privacy-preserving approximations to “holistic” functions f
that operate on the entire database broadens the scope of private data analysis
beyond the orignal motivation of a purely statistical, or “sample population”
context. Now we can view the database as an object that is itself of intrinsic in-
terest and that we wish to analyze in a privacy-preserving fashion. For example,
the database may describe a concrete interconnection network – not a sample
subnetwork – and we wish to learn certain properties of the network without re-
leasing information about individual edges, nodes, or subnetworks. The technol-
ogy developed herein therefore extends the scope of the line of research, beyond
privacy-preserving statistical databases to privacy-preserving analysis of data.

1.1 Additional Contributions

Definitions of Privacy Definition of privacy requires care. In addition to our
indistinguishability-based definition mentioned above we also consider no-
tions based on semantic security and simulation and prove equivalences
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among these. A simple hybrid argument shows that utility requires non-
negligible information leakage, hence all our definitions differ from their
original cryptographic counterparts in that we accommodate non-negligible
leakage. In particular, the standard measure of statistical difference is not a
sufficiently good metric in our setting, and needs to be replaced with a more
delicate one.
In previous work [10, 11, 6], the definitions were based on semantic secu-
rity but the proofs were based on indistinguishability, so our move to ε-
indistinguishability is a simplification. Also, semantic security was proved
against informed adversaries. That is, an adversary with knowledge of the
entire database except a single row, say, row i, could not glean any addi-
tional information about row i beyond what it knew before interaction with
the privacy mechanism. This is fine; it says that without the database, see-
ing that X smokes does not necessarily increase our gambling odds that X
will develop heart disease, but if the database teaches the correlation be-
tween smoking and heart disease improving our guessing odds should not
be considered a violation of privacy. However, the new formulation imme-
diately gives indistinguishability against an adversary with any amount of
prior knowledge, and the above explanation is no longer necessary.

Examples of Sensitivity-Based Analysis To illustrate our approach, we an-
alyze the sensitivity of specific data analysis functions, including histograms,
contingency tables, and covariance matrices, all of which have very high-
dimensional output, and show that their sensitivities are independent of the
dimension. Previous privacy-preserving approximations to these quantities
used noise proportional to the dimension; the new analysis permits noise
of size O(1). We also give two general classes of functions which have low
sensitivity: functions which estimate distance from a set (e.g minimum cut
size in a network) and functions which can be approximated from a random
sample.

Limits on Non-Interactive Mechanisms. There are two natural models of
data sanitization: interactive and non-interactive. In the non-interactive set-
ting, the data collector—a trusted entity—publishes a “sanitized” version of
the collected data; the literature uses terms such as “anonymization” and
“de-identification”. Traditionally, sanitization employed some perturbation
and data modification techniques, and may also have included some accom-
panying synopses and statistics. In the interactive setting, the data collector
provides a mechanism with which users may pose queries about the data,
and get (possibly noisy) answers.
The first of these seems quite difficult (see [12, 7, 8]), possibly due to the
difficulty of supplying utility that has not yet been specified at the time the
sanitization is carried out. In contrast, powerful results for the interactive
approach have been obtained ([11, 6] and the present paper). We show that
for any non-interactive mechanism San satisfying our definition of privacy,
there exist low-sensitivity functions f(x) which cannot be approximated at
all based on San(x), unless the database is very large: If each database entry
consists of d bits, then the database must have 2Ω(d) entries in order to
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answer all low-sensitivity queries—even to answer queries from a restricted
class called sum queries. In other words, a non-interactive mechanism must
be tailored to suit certain functions to the exclusion of others. This is not
true in the interactive setting, since one can answer the query f with little
noise regardless of n4.
The separation results are significant given that the data-mining literature
has focused almost exclusively on non-interactive mechanisms, specifically,
randomized response (see Related Work below) and that statisticians have
traditionally operated on “tables” and have expressed to us a strong prefer-
ence for non-interactive “noisy tables” over an interactive mechanism.

1.2 Related Work

The literature in statistics and computer science on disseminating statistical data
while preserving privacy is extensive; we discuss only directly relevant work here.
See, e.g., [5] for pointers to the broader literature.

Privacy from Perturbation. The venerable idea of achieving privacy by
adding noise is both natural and appealing. An excellent and detailed exposi-
tion of the many variants of this approach explored in the context of statistical
disclosure control until 1989, many of which are still important elements of the
toolkit for data privacy today, may be found in the survey of Adam and Wort-
mann [1]. The “classical” antecedent closest in spirit to our approach is the work
of Denning [9].

Perturbation techniques are classified into two basic categories: (i) Input
perturbation techniques, where the underlying data are randomly modified, and
answers to questions are computed using the modified data; and (ii) Output per-
turbation, where (correct) answers to queries are computed exactly from the real
data, but noisy versions of these are reported. Both techniques suffer from certain
inherent limitations (see below); it seems that these limitations caused a decline
in interest within the computer science community in designing perturbation
techniques for achieving privacy5.

The work of Agrawal and Srikant [3] rekindled this interest; their principal
contribution was an algorithm that, given an input-perturbed database, learns
the original input distribution. Subsequent work studied the applicability and
limitations of perturbation techniques, and privacy definitions have started to
evolve, as we next describe.

Definitional Work. Several privacy definitions have been put forward since
[3]. Their definition measured privacy in terms of the noise magnitude added to

4 It is also not true if one employs weaker definitions of security; the connection be-
tween the definitions and the separation between models of interaction is subtle and,
in our view, surprising. See Section 4.

5 The same is not true of the statistics community; see, for example, the work of
Roque [14].
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a value. This was shown to be problematic, as the definition ignored what an
adversary knowing the underlying probability distribution might infer about the
data [2]. Evfimievsky et al. [12] noted, however, that such an average measure
allows for infrequent but noticeable privacy breaches, and suggested measuring
privacy in terms of the worst-case change in an adversary’s a-priori to a-posteriori
beliefs. Their definition is a special case of Definition 1 for input perturbation
protocols of a limited form. A similar, more general definition was suggested in
[10, 11, 6]. This was modeled after semantic security of encryptions.

Our basic definition of privacy, ε-indistinguishability, requires that a change
in one database entry induce a small change in the distribution on the view of the
adversary, under a specific, “worst-case” measure of distance. It is the same as in
[12], adapted to general interactive protocols. An equivalent, semantic-security-
flavored formulation is a special case of the definition from [10, 11, 6]; those
definitions allowed a large loss of privacy to occur with negligible probability.

We note that k-anonymity [15] and the similarly motivated notion of protec-
tion against isolation [7, 8]) have also been in the eye of privacy research. The
former is a syntactic characterization of (input-perturbed) databases that does
not immediately capture semantic notions of privacy; the latter definition is a
geometric interpretation of protection against being brought to the attention of
others. The techniques described herein yield protection against isolation.

Sum Queries. A cryptographic perspective on perturbation was initiated by
Dinur and Nissim [10]. They studied the amount of noise needed to maintain
privacy in databases where a query returns (approximately) the number of 1’s
in any given subset of the entries. They showed that if queries are not restricted,
the amount of noise added to each answer must be very high – linear (in n, the
size of the database) for the case of a computationally unbounded adversary, and
Ω(
√

n) for a polynomially (in n) bounded adversary. Otherwise, the adversary
can reconstruct the database almost exactly, producing a database that errs on,
say, 0.01% of the entries. In contrast, jointly with Dwork, they initiated a se-
quence of work [10, 11, 6] which showed that limiting the users to a sublinear
(in n) number of queries (“SuLQ”) allows one to release useful global informa-
tion while satisfying a strong definition of privacy. For example, it was shown
that the computationally powerful noisy sum queries discussed above, that is,∑n

i=1 g(i, xi), where g maps rows to values in [0, 1], can be safely answered by
adding o(

√
n) noise (from a gaussian, binomial, or Laplace distribution)— a level

well below the sampling error one would expect in the database initially.

2 Definitions

We model the adversary as a probabilistic interactive Turing machine with an
advice tape. Given a database access protocol San, an adversary A, and a par-
ticular database x, let the random variable TSan,A(x) denote the transcript. The
randomness in TSan,A(x) comes from the coins of San and of A. Note that for
non-interactive schemes, there is no dependence on the adversary A. We will
drop either or both of the subscripts San and A when the context is clear.
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We model the database as a vector of n entries from some domain D. We
typically consider domains D of the form {0, 1}d or Rd. The Hamming distance
dH(·, ·) over Dn is the number of entries in which two databases differ.

Our basic definition of privacy requires that close databases correspond to
close distributions on the transcript. Specifically, for every transcript, the proba-
bilities of it being produced with the two possible databases are close. We abuse
notation somewhat and use Pr[A = a] to denote probability density for both
continuous and discrete random variables.

Definition 1. A mechanism is ε-indistinguishable if for all pairs x,x′ ∈ Dn

which differ in only one entry, for all adversaries A, and for all transcripts t:∣∣∣∣ln(
Pr[TA(x) = t]
Pr[TA(x′) = t]

)
∣∣∣∣ ≤ ε. (1)

We sometimes call ε the leakage. When ε is small, ln(1+ε) ≈ ε, and so the def-
inition is roughly equivalent to requiring that for all transcripts t, Pr[TA(x)=t]

Pr[TA(x′)=t] ∈
1± ε.

The definition is unusual for cryptography, in that in most cryptographic
settings it is sufficient to require that distributions be statistically close (i.e. have
small total variation distance) or that they be computationally indistinguishable.
However, the requirement of Definition 1 is much more stringent than statistical
closeness: one can have a pair of distributions whose statistical difference is
arbitrarily small, yet where the ratio in Eqn. 1 is infinite (by having a point
where one distribution assigns probability zero and the other, non-zero). We
chose the more stringent notion because (a) it is achievable at very little cost,
and (b) more standard distance measures do not yield meaningful guarantees in
our context, since, as we will see, the leakage must be non-negligible. As with
statistical closeness, Definition 1 also has more “semantic” formulations; these
are discussed in Appendix A.

As we will next show, it is possible to release quite a lot of “global” informa-
tion about the database while satisfying Definition 1. We first define the Laplace
distribution, Lap(λ). This distribution has density function h(y) ∝ exp (−|y|/λ),
mean 0, and standard deviation λ.

Example 1 (Noisy Sum). Suppose x ∈ {0, 1}n, and the user wants to learn
f(x) =

∑
i xi, the total number of 1’s in the database. Consider adding noise to

f(x) according to a Laplace distribution:

T (x1, . . . , xn) =
∑

i

xi + Y, where Y ∼ Lap(1/ε).

This mechanism is ε-indistinguishable. To see why, note that for any real numbers
y, y′ we have h(y)

h(y′) ≤ eε|y−y′|. For any two databases x and x′ which differ in a
single entry, the sums f(x) and f(x′) differs by one. Thus, for t ∈ R, the ratio
Pr(T (x)=t)
Pr(T (x′)=t) = h(t−f(x))

h(t−f(x′)) is at most eε|f(x)−f(x′)| ≤ eε, as desired.
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Non-negligible Leakage and the Choice of Distance Measure. In the
example above it is clear that even to get a constant-factor approximation to
f(x), we must have ε = Ω(1/n), quite large by cryptographic standards where
the usual requirement is for the leakage to drop faster than any polynomial
in the lengths of the inputs. However, non-negligible or leakage is inherent for
statistical utility: If the distance ε between the distributions induced by close
databases is o(1/n), then the distance between the distributions induced by
any two databases is o(1) and no statistic about the database can be usefully
approximated.

Average-case distance measures such as statistical difference do not yield
meaningful guarantees when ε = Ω(1/n).

Example 2. Consider the candidate sanitization

T (x1, ..., xn) = (i, xi) where i ∈R {1, ..., n} .

If x and x′ differ in a single position, the statistical difference between T (x) and
T (x′) is 1/n, and yet it is clear that every transcript reveals private information
about some individual.

Indeed, Definition 1 is not satisfied in this example, since if x and x′ differ, say,
in the ith coordinate, then the transcript (i, xi) has probability zero when the
database is x′.

3 Sensitivity and Privacy

We now formally define sensitivity of functions, described informally in the In-
troduction. We will prove that choosing noise according to Lap(S(f)/ε) ensures
ε-indistinguishability when the query function f has sensitivity S(f). We extend
the analysis to vector-valued functions f , and even to adaptively chosen series of
query functions. Intuitively, if ε is a “privacy budget” then this analysis explains
how the budget is spent by a sequence of queries.

Definition 2 (L1 Sensitivity). The L1 sensitivity of a function f : Dn → Rd

is the smallest number S(f) such that for all x,x′ ∈ Dn which differ in a single
entry,

‖f(x)− f(x′)‖1 ≤ S(f) .

Sensitivity is a Lipschitz condition on f : if dH(·, ·) is the Hamming metric on
Dn, then for all pairs of databases x,x′ ∈ Dn: ‖f(x)−f(x′)‖1

dH(x,x′) ≤ S(f). One can
define sensitivity with respect to any metric on the output space; see Section 3.3.

Example 3 (Sums and Histograms). Consider the sum functionality above: if
D = {0, 1} and f(x) =

∑n
i=1 xi (viewed as an real number), then the sensitivity

of f with respect to the usual metric on R is SL1(f) = 1.
Now consider an arbitrary domain D which has been partitioned into d dis-

joint bins B1, ..., Bd. The function f : Dn → Zd which computes the number
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of database points which fall into each bin is called a histogram for B1, ..., Bm.
Changing one point in the database can change at most two of these counts —
one bin loses a point, another bin gains one. The L1 sensitivity of f is thus 2,
independent of d.

3.1 Calibrating Noise According to S(f)

Recall that if the noise Y is drawn from the Laplace distribution, then h(y)/h(y′)
is at most e|y−y′|/λ. A similar phenomenon holds in higher dimension. If Y is a
vector of d independent Laplace variables, the density function at y is propor-
tional to exp(−‖y‖1/λ). A simple but important consequence is that the random
variables z + Y and z′ + Y are close in the sense of Definition 1: for all t ∈ Rd,

Pr(z + Y = t)
Pr(z′ + Y = t)

∈ exp(±‖z − z′‖1
λ

).

Thus, to release a (perturbed) value f(x) while satisfying privacy, it suffices
to add Laplace noise with standard deviation S(f)/ε in each coordinate.

Proposition 1 (Non-interactive Output Perturbation). For all f : Dn →
Rd, the following mechanism is ε-indistinguishable:
Sanf (x) = f(x) + (Y1, ..., Yd) where the Yi are drawn i.i.d. from Lap(S(f)/ε)

The proposition is actually a special case of the privacy of a more general,
possibly adaptive, interactive process.

Before continuing with our discussion, we will need to clarify some of the no-
tation to highlight subtleties raised by adaptivity. Specifically, adaptivity com-
plicates the nature of the “query function”, which is no longer a predetermined
function, but rather a strategy for producing queries based on answers given
thus far. For example, an adaptive histogram query might ask to refine those
regions with a substantial number of respondents, and we would expect the set
of such selected regions to depend on the random noise incorporated into the
initial responses.

Recalling our notation, a transcript t = [Q1, a1, Q2, a2 . . . , Qd, ad] is a se-
quence of questions and answers. For notational simplicity, we will assume that
Qi is a well defined function of a1, . . . , ai−1, and that we can therefore truncate
our transcripts to be only a vector t = [a1, a2, . . . , ad]6. For any transcript t, we
will let ft : D → Rd be the function whose ith coordinate reflects the query Qi,
which we assume to be determined entirely by the first i−1 components of t. As
we now see, we can bound the privacy of an adaptive series of questions using
the largest diameter among the functions ft.

Consider a trusted server, holding x, which receives an adaptive sequence of
queries f1, f2, f3, ..., fd, where each fi : Dn → R. For each query, the server San
either (a) refuses to answer, or (b) answers fi(x) + Lap(λ). The server can limit

6 Although as written the choice of query is deterministic, this can be relaxed by
adding coins to the transcript.
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the queries by refusing to answer when S(ft) is above a certain threshold. Note
that the decision whether or not to respond is based on S(ft), which can be
computed by the user, and hence is not disclosive.

Theorem 1. For an arbitrary adversary A, let ft(x) : Dn → Rd be its query
function as parameterized by a transcript t. If λ = maxt S(ft)/ε, the mechanism
above is ε-indistinguishable.

Proof. Using the law of conditional probability, and writing ti for the indices
of t,

Pr[Sanf (x) = t]
Pr[Sanf (x′) = t]

=
∏

i

Pr[Sanf (x)i = ti|t1, . . . , ti−1]
Pr[Sanf (x′)i = ti|t1, . . . , ti−1]

For each term in the product, fixing the first i − 1 coordinates of t fixes the
values of ft(x)i and ft(x′)i. As such, the conditional distributions are simple
laplacians, and we can bound each term and their product as∏

i

Pr[Sanf (x)i = ti|t1, . . . , ti−1]
Pr[Sanf (x′)i = ti|t1, . . . , ti−1]

≤
∏

i

exp(|ft(x)i − ft(x′)i|/λ)

= exp(‖ft(x)− ft(x′)‖1/λ)

We complete the proof using the bound S(ft) ≤ λε, for all t.

3.2 Specific Insensitive Functions

We describe specific functionalities which have low sensitivity, and which conse-
quently can be released with little added noise using the protocols of the previous
section.

Histograms and Disjoint Analyses. There are many types of analyses that
first partition the input space into disjoint regions, before proceeding to analyze
each region separately. One very simple example of such an analysis is a his-
togram, which simply counts the number of elements that fall into each region.
Imagining that D is subdivided into d disjoint regions, and that f : Dn → Zd

is the function that counts the number of elements in each region, we saw in
Example 3 that S(f) = 2. Notice that the output dimension, d, does not play
a role in the sensitivity, and hence in the noise needed in an ε-indistinguishable
implementation of a histogram. Comparing this with what one gets by applying
the framework of [6] we note a significant improvement in the noise. Regarding
each bin value as a query, the noise added in the original framework to each
coordinate is O(

√
d/ε), and hence the total L1 error is an O(

√
d) factor larger

than in our scheme. This factor is especially significant in applications where bins
outnumber the data points (which is often the case with contingency tables).

Clearly any analysis that can be run on a full data set can be run on a subset,
and we can generalize the above observation in the following manner. Letting
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D be partitioned into d disjoint regions, let f : Dn → Rd be a function whose
output coordinates f(x)i depend only on those elements in the ith region. We
can bound S(f) ≤ 2 maxi S(fi). Again, and importantly, the value of d does not
appear in this bound.

Linear Algebraic Functions. One very common analysis is measuring the
mean and covariance of attributes of the data. If v : D → Rd is some function
mapping rows in the database to column vectors in Rd, the mean vector µ and
covariance matrix C are defined as

µ = µ(x1, . . . , xn) = avg
i

v(xi)

and C = C(x1, . . . , xn) = avg
i

v(xi)v(xi)T − µµT .

These two objects have dimension d and d2, respectively, and a crude bound
on their sensitivity would incorporate these terms. However, if we are given an
upper bound γ = maxx ‖v(x)‖1, then we can incorporate it into our sensitivity
bounds.

Specifically, the mean is simply a sum, and an arbitrary change to a single
term results in a vector µ+δ where ‖δ‖1 ≤ 2γ/n. The covariance matrix is more
complicated, but is also a sum at heart. Using the L1 norm on matrices as one
might apply the L1 to a d2 dimensional vector, we see that an arbitrary change
to a single xi can change the µµT term by at most

µµT − (µ + δ)(µ + δ)T = µδT + δµT + δδT (2)
= µδT + δ(µ + δ)T (3)

The first and second terms each have L1 norm at most 2γ2/n. An arbitrary
change to xi can alter a v(xi)v(xi)T term by at most 4γ2. Hence a total L1
change of 8γ2/n.

Again, we witness an improvement in the noise magnitude when compared to
applying the framework of [6]. As computing C amounts to performing d2 queries,
we get L1 noise that is O(d) factor larger than with the current analysis.

Distance from a Property. The functionalities discussed until now had a
simple representation as sums of vectors, and the sensitivity was then (at most)
twice the maximum L1 norm of one of these vectors. However, one can bound
the sensitivity of much more complex functions.

Given a set S ⊆ Dn, the distance fS(x) between a particular database x and
S is the Hamming distance (in Dn) between x and the nearest point x′ in S.
For any set S, fS(x) has sensitivity 1. We can safely release fS(x) + Y where
Y ∼ Lap(1/ε).

As an example, we could imagine social network described as a database
of links between pairs of individuals. We might like to measure how “robust”
the network is: how many social links would have to change (either added or
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removed) for the graph to become disconnected, non-expansive, or poorly clus-
tered? Each of these counts, which change by at most one when a single edge is
altered, can be released with only a small amount of noise added.

Suppose that n =
(
m
2

)
, D = [0, 1], and we interpret the entries of the database

as giving the weights of edges in a graph with m vertices (that is, the “individu-
als” here are the edges). Then the weight of the minimum edge-cut in the graph,
which is the distance from the nearest disconnected graph, is a 1-sensitive func-
tion. It is easily computable, and so one can safely release this information about
a network (approximately) without violating the privacy of the component edges.

Other interesting graph functionalities also have low sensitivity. For example,
if D = [0, 1], the weight of the minimum spanning tree is 1-sensitive.

Functions with Low Sample Complexity. Any function f which can be
accurately approximated by an algorithm which looks only at a small fraction
of the database has low sensitivity, and so the value can be released safely with
relatively little noise. In particular, functions which can be approximated based
on a random sample of the data points fit this criterion.

Lemma 1. Let f : Dn → Rd. Suppose there is a randomized algorithm A such
that for all inputs x, (1) for all i, the probability that A reads xi is at most α
and (2) ‖A(x)− f(x)‖1 ≤ σ with probability at least β = 1+α

2 . Then S(f) ≤ 2σ.

The lemma translates a property of f related to ease of computation into a
combinatorial property related to privacy. It captures many of the low-sensitivity
functions described in the preceding sections, although the bounds on sensitivity
given by the lemma are often quite loose.

Proof. For any particular entry i ∈ {1, ..., n}, denote by A(x)
∣∣
−i

the distribution
on the outputs of A conditioned on the event that A does not read position i. By
the definition of conditional probability, we get that for all x the probability that
A(x)

∣∣
−i

is within distance σ of f(x) is strictly greater than (β−α)/(1−α) ≥ 1
2 .

Pick any x,x′ which only differ in the ith position. By the union bound, there
exists some point p in the support of A(x)

∣∣
−i

which is within distance σ of both
f(x) and f(x′), and hence ‖f(x)− f(x′)‖1 ≤ ‖f(x)− p‖1 + ‖p− f(x′)‖1 ≤ 2σ.

One might hope for a converse to Lemma 1, but it does not hold. Not all
functions with low sensitivity can be approximated by an algorithm with low
sample complexity. For example, let D = GF (2dlog ne) and let f(x) denote the
Hamming distance between x and the nearest codeword in a Reed-Solomon code
of dimension k = n(1−o(1)). One cannot learn anything about f(x) using fewer
than k queries, and yet f has sensitivity 1 [4].

3.3 Sensitivity in General Metric Spaces

The intuition that insensitive functions of a database can be released privately
is not specific to the L1 distance. Indeed, it seems that if changing one entry
in x induces a small change in f(x) — under any measure of distance on f(x)
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— then we should be able to release f(x) privately with relatively little noise.
We formalize this intuition for (almost) any metric dM on the output f(x).
We will use symmetry, i.e. dM(x, y) = dM(y, x), and the triangle inequality:
dM(x, y) ≤ dM(x, z) + dM(z, y).

Definition 3. Let M be a metric space with a distance function dM(·, ·). The
sensitivity SM(f) of a function f : Dn → M is the amount that the function
value varies when a single entry of the input is changed.

SM(f) def= sup
x,x′: dH(x,x′)=1

dM(f(x), f(x′))

Given a point z ∈ M, (and a measure on M) we can attempt to define a
probability density function

hz,ε(y) ∝ exp
(

ε · dM(y, z)
2 · SM(f)

)
.

There may not always exist such a density function, since the right-hand ex-
pression may not integrate to a finite quantity. However, if it is finite then the
distribution given by hz,ε() is well-defined.

To reveal an approximate version of f(x) with sensitivity S, one can sample
a value according to hf(x),ε/S().

Pr[T (x) = y] =
exp

(
ε

2SM(f) · dM(y, f(x))
)

∫
y∈M exp

(
ε

2SM(f) · dM(y, f(x))
)

dy
. (4)

Theorem 2. In a metric space where hf(x),ε() is well-defined, adding noise to
f(x) as in Eqn. 4 yields an ε-indistinguishable scheme.

Proof. Let x and x′ be two databases differing in one entry. The distance
dM(f(x), f(x′)) is at most S(f). For any y, the ratio exp(dM(y,f(x)))

exp(dM(y,f(x′))) is thus at

most eS(f), by the triangle inequality. Similarly, the ratio
exp( ε

2S(f) ·dM(y,f(x)))
exp( ε

2S(f) ·dM(y,f(x′)))

is at most eε/2. Finally, the normalization constant
∫

y∈M exp
(

ε·dM(y,f(x))
2S(f)

)
dy

also differs by a factor of at most eε/2 between x and x′, since at all points in the
space the integrand differs by at most eε/2. The total ratio hf(x),ε(y)

/
hf(x′),ε(y)

differs by at most eε/2 · eε/2 = eε, as desired.

Remark 1. One can get rid of the factor of 2 in the definition of hz,ε() in cases
where the normalization factor does not depend on z. This introduces slightly
less noise.

As a simple example, consider a function whose output lies in the Hamming
cube {0, 1}d. By Theorem 2, one can release f(x) safely by flipping each bit of
the output f(x) independently with probability roughly 1

2 −
ε

2S(f) .
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4 Separating Interactive Mechanisms from
Non-interactive Ones

In this section, we show a strong separation between interactive and non-interactive
database access mechanisms. Consider the interactive setting of [10, 11, 6], that
answers queries of the form fg(x) =

∑n
i=1 g(i, xi) where g : [n]×D → [0, 1]. As

the sensitivity of any fg is 1, an interactive access mechanism can answer any
such query with accuracy about 1/ε. This gives a good approximation to f(x)
as long as ε is larger than 1/n.

Suppose the domain D is {0, 1}d. We show below that for any non-interactive,
ε-indistinguishable mechanism San, there are many functions fg which cannot be
answered by TSan unless the database consists of at least 2Ω(d) points. For these
queries, it is not possible to distinguish the sanitization of a database in which
all of the n entries satisfy g(i, xi) = 0 from a database in which all of the entries
satisfy g(i, xi) = 1. We will consider Boolean functions gr of a specific form.
Given n non-zero binary strings r = (r1, r2, ..., rn), ri ∈ {0, 1}d, we define gr(i, x)
to be the inner product, modulo 2, of ri and x, that is gr(i, x) =

⊕
j x(j)r

(j)
i ,

denoted ri� x. In the following we will usually drop the subscript r and write g
for gr.

Theorem 3 (Non-interactive Schemes Require Large Databases). Sup-
pose that San is an ε-indistinguishablenon-interactive mechanism with domain
D = {0, 1}d. For at least 2/3 of the functions of the form fg(x) =

∑
i g(i, xi),

the following two distributions have statistical difference O(n4/3ε2/32−d/3):

Distribution 0: TSan(x) where x ∈R {x ∈ Dn : fg(x) = 0}
Distribution 1: TSan(x) where x ∈R {x ∈ Dn : fg(x) = n}

In particular, if n = o( 2d/4
√

ε
), for most functions g(i, x) = ri�x, it is impossible

to learn the relative frequency of database items satisfying the predicates g(i, xi).
We prove Theorem 3 below. First, a few remarks:

1. The order of the quantifiers is important: for any particular fg(), it is easy
to design a non-interactive scheme which answers that query accurately.
However, no single non-interactive scheme can answer most queries of this
form, unless n ∈ exp(d).

2. The strong notion of ε-indistinguishability in Definition 1 is essential to The-
orem 3. For example, consider the candidate sanitization which outputs m
pairs (i, xi) chosen at random from the database. When m = θ(1) this is
essentially Example 2; it fails to satisfy Definition 1 but yields O(1/n)-close
distributions O(1/n) on neighboring databases. However, it does permit es-
timating fg with accuracy about n/

√
m (the order of quantifiers is again

important: for any particular query, the sample will be good with high prob-
ability). Thus, even for constant m, this is better than what is possible for
any ε-indistinguishable scheme with n = 2o(d).
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4.1 A Stronger Separation for Randomized Response Schemes

”Randomized response” refers to a special class of non-interactive schemes, in
which each user’s data is perturbed individually, and then the perturbed values
are published. That is, there exists a randomization operator Z : D → {0, 1}∗
such that

TSan(x1, ..., xn) = Z(x1), ..., Z(xn).

This approach means that no central server need ever see the users’ private data:
each user i computes Z(xi) and releases only that.

We can strengthen Theorem 3 for randomized response schemes. We can
consider functions fg where the same predicate g : D → {0, 1} is applied to all
the entries in x. I.e. f(x) =

∑
i g(xi) (e.g. “how many people in the database

have blue eyes?”). For most vectors r, the parity check gr(x) = r � x will be
difficult to learn from Z(x), and so f(x) will be difficult to learn from TSan(x)
unless n is very large.

Proposition 2 (Randomized Response). Suppose that San is a ε-indistinguishable
randomized response mechanism. For at least 2/3 of the values r ∈ {0, 1}d\{0d},
the following two distributions have statistical difference O(nε2/32−d/3):

Distribution 0: TSan(x) where each xi ∈R

{
x ∈ {0, 1}d : r � x = 0

}
Distribution 1: TSan(x) where each xi ∈R

{
x ∈ {0, 1}d : r � x = 1

}
In particular, if n = o(2d/3/ε2/3), no user can learn the relative frequency of

database items satisfying the predicate gr(x) = r � x, for most values r.

4.2 Proving the Separation Results

The two proofs have the same structure: a hybrid argument with a chain of
length 2n, in which the bound on statistical distance at each step in the chain
is given by Lemma 2 below. Adjacent elements in the chain will differ according
to the domain from which one of the entries in the database is chosen, and the
elements in the chain are the probability distributions of the sanitizations when
the database is chosen according to the given n-tuple of distributions.

For any r, partition the domain D into two sets: Dr =
{
x ∈ {0, 1}d : r � x = 0

}
,

and D̄r = D \ Dr =
{
x ∈ {0, 1}d : r � x = 1

}
. We abuse notation and let Dr

also stand for a random vector chosen uniformly from that set (similarly for D
and D̄r).

The intuition for the key step is as follows. Given a randomized map Z :
D → {0, 1}∗, the quantity Pr[Z(Dr) = z] is with high probability an estimate
for Pr[Z(D) = z]. That is because when r is chosen at random, Dr consists of
0d, along with 2d−1 − 1 points chosen pairwise independently in {0, 1}d. This
allows us to show that the variance of the estimator Pr[Z(Dr) = z] is very
small, as long as Z satisfies a strong indistinguishability condition implied by
ε-indistinguishability. As a result, the distribution Z(Dr) will be very close to
Z(D).
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Lemma 2. Let Z : D → {0, 1}∗ be a randomized map such that for all pairs
x, x′ ∈ D, and all outputs z, Pr[Z(x)=z]

Pr[Z(x′)=z] ∈ exp(±ε). For all α > 0: with probability
at least 1− α over r ∈ {0, 1}d \

{
0d
}
,

SD (Z(Dr) , Z(D)) ≤ O
( ε2

α · 2d

)1/3

.

The same statement holds for D̄r.

The lemma is proved below, in Section 4.3. We first use it to prove the two
separation results.

Proof (Proof of Theorem 3). “Distribution 0” in the statement is TSan(Dr1 , ..., Drn
).

We show that with high probability over the choice of the ri’s, this is close the
transcript distribution induced by a uniform input, i.e. T (D, ..., D). We proceed
by a hybrid argument, adding one constraint at a time. For each i, we want to
show

TSan(Dr1 , ..., Dri
, D , D, ...,D) is close to

TSan(Dr1 , ..., Dri
, Dri+1 , D, ...,D).

Suppose that we have chosen r1, ..., ri already. For any x ∈ {0, 1}d, consider
the randomized map where the (i + 1)-th coordinate is fixed to x:

Z(x) = TSan(Dr1 , ..., Dri
, x , D, ...,D) (5)

Note that Z(D) is equal to the i-th step in the hybrid, and Z(Dri+1) is equal to
the (i + 1)-st step.

The ε-indistinguishabilityof San implies that Z() satisfies Pr[Z(x)=z]
Pr[Z(x′)=z] ∈ exp(±ε).

Applying Lemma 2 shows that with probability at least 1− 1
6n over ri+1, Z(Dri

)
is within statistical difference σ of Z(D), where σ = O( 3

√
nε22−d). That is,

adding the i-th constraint on the inputs changes the output distribution by at
most σ. By a union bound, all the steps in the hybrid have size at most σ with
probability at least 5

6 . In that case, the total distance is nσ.
We can apply exactly the same reasoning to a hybrid starting with Distribu-

tion 1, and ending with T (D, ..., D). Again, with probability at least 5
6 , the total

distance is nσ. With probability at least 2/3, both chains of hybrids accumulate
statistical difference bounded by nσ, and the distance between Distributions 0
and 1 is at most 2nσ = O(n4/3ε2/32−d/3).

Proof (Proof of Proposition 2). If TSan is a randomized response scheme, then
there is a randomized map Z() from D to {0, 1}∗, such that TSan(x1, ..., xn) =
Z(x1), ..., Z(xn). If TSan is ε-indistinguishable, then for all pairs x, x′ ∈ D, and
for all outputs z, Pr[Z(x)=z]

Pr[Z(x′)=z] ∈ exp(±ε).
It is sufficient to show that with probability at least 2/3 over a random

choice r, r 6= 0d, the distributions Z(Dr) and Z(D̄r) are within statistical dif-
ference O(ε2/32−d/3). This follows by applying Lemma 2 with α = 1/3. By a
hybrid argument, the difference between Distributions 0 and 1 above is then
O(nε2/32−d/3).
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4.3 Proving that Random Subsets Approximate the Output
Distribution

Proof (Proof of Lemma 2). Let p(z|x) denote the probability that Z(x) = z. If
x is chosen uniformly in {0, 1}d, then the probability of outcome z is p(z) =
1
2d

∑
x p(z|x).

For symmetry, we will pick not only the string r but an offset bit b, and
look at the set Dr,b =

{
x ∈ {0, 1}d : r � x = b

}
. This simplifies the calculations

somewhat.
One can think of Pr[Z(Dr,b) = z] as estimating p(z) by pairwise-independently

sampling 2d/2 values from the set D and only averaging over that subset. Since,
by the assumption on Z, the values p(z|x) all lie in an interval of width about
ε · p(z) around p(z), this estimator will have small standard deviation. We will
use this to bound the statistical difference.

Let p̂(z) = Pr[Z(Dr,b) = z], where the probability is taken over the coin
flips of Z and the choice of x ∈ Dr,b. For a fixed z, p̂(z) is a random variable
depending on the choice of r, b, and Er,b [p̂(z)] = p(z).

Claim 1. Varr,b [p̂(z)] ≤ 2 · ε̃2 · p(z)2

2d
, where ε̃ = eε − 1.

The proof of Claim 1 appears below. We now complete the proof of Lemma 2.
We say that a value z is δ-good for a pair (r, b) if p̂(z)− p(z) ≤ δ · p(z). By the
Chebyshev bound, for all z,

Pr
r,b

[z is not δ-good for (r, b)] ≤ Var [p̂(z)]
δ2p(z)2

≤ 2ε̃2

δ22d
.

If we take the distribution on z given by p(z), then with probability at least
1− α over pairs (r, b), the fraction of z’s (under p(·)) which are good is at least
1− 2ε̃2

αδ22d .
Finally, if a 1 − γ fraction of the z’s are δ-good for a particular pair (r, b),

then the statistical difference between the distribution p̂(z) and p(z) is at most

2(γ + δ). Setting δ = 3

√
2αε̃2

2d , we get a total statistical difference of at most
4δ. Since ε̃ < 2ε for ε ≤ 1, the total distance between p̂(·) and p(·) is at most
4 3
√

12ε22−d, for at least a 1−α fraction of the pairs (r, b). The bit b is unimportant
here since it only switches Dr and its complement D̄r. The distance between
Z(Dr) and Z(D) is exactly the same as the distance between Z(D̄r) and Z(D),
since Z(D) is the mid-point between the two. Thus, the statement holds even
over pairs of the form (r, 0). This proves Lemma 2.

Proof (Proof of Claim 1). Let p∗ be the minimum over x of p(z|x). Let qx =
p(z|x)−p∗ and q̄ = p(z)−p∗. The variance of p̂(z) is the same as the variance of
p̂(z)−p∗. We can write p̂(z)−p∗ as 2

2d

∑
x qxχ0(x), where χ0(x) is 1 if x ∈ Dr,b.

The expectation of p̂(z)− p∗ is q̄, which we can write 1
2d

∑
x qx.

Var
r,b

[p̂(z)] = E
r,b

[(
2
2d

∑
x

qxχ0(x)− 1
2d

∑
x

qx

)2
]

= E
r,b

[(
1
2d

∑
x

qx

(
2χ0(x)− 1

))2
]

(6)
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Now
(
2χ0(x)− 1

)
= (−1)r�x⊕b. This has expectation 0. Moreover, for x 6= y,

the expectation of
(
2χ0(x)− 1

)(
2χ0(y)− 1

)
is exactly 1/2d (if we chose r with

no restriction it would be 0, but we have the restriction that r 6= 0d). Expanding
the square in Eqn. 6,

Var
r,b

[p̂(z)] = 1
22d

∑
x

q2
x + 1

23d

∑
x6=y

qxqy

=
1− 1

2d

22d

∑
x

q2
x + 1

2d

(
1
2d

∑
x

qx

)2

≤ 1
2d

(
max

x
q2
x + q̄2

)
.

By the indistinguishability condition, both (maxx qx) and q̄ are at most (eε −
1)p∗ ≤ ε̃ · p(z). Plugging this into the last equation proves Claim 1.
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Appendix

A “Semantically” Flavored Implications of Definition 1

Definition 1 equates privacy with the inability to distinguish two close databases.
Indistinguishability is a convenient notion to work with (as is indistinguishability
of encryptions [13]); however, it does not directly say what an adversary may do
and learn. In this section we present some “semantically” flavored definitions of
privacy, and their equivalence to Definition 1.

Because of the need to have some utility conveyed by the database, it is not
possible to get as strong a notion of security as we can, say, with encryption. We
discuss two definitions which we consider meaningful, suggestively named sim-
ulatability and semantic security. The natural intuition is that if the adversary
learns very little about xi for all i, then privacy is satisfied. Recall the discussion
of smoking and heart disease, from the Introduction. What is actually shown is
that the adversary cannot learn much more about any xi than she could learn
from knowing almost all the data points except xi.

Extending terminology from Blum et al. [6], we say an adversary is informed
if she knows some set of n−k database entries before interacting with the mech-
anism, and tries to learn about the remaining ones. The parameter k measures
her remaining uncertainty.

Definition 4. A mechanism San is (k, ε)-simulatable if for every adversary A,
and for every set I ⊆ [n] of size n − k, there exists an informed adversary A′

such that for any x ∈ Dn:∣∣∣∣∣ln(
Pr[ TSan,A(x) = t ]
Pr[ A′(x

∣∣
I
) = t ]

)

∣∣∣∣∣ ≤ ε

where x
∣∣
I

denotes the restriction of x to the index set I.

For convenience in stating implications among definitions, we extend the
definition of indistinguishability (Definition 1) to pairs of databases at Hamming
distance k:

Definition 5. A mechanism is (k, ε)-indistinguishable if for all pairs x,x′ which
differ in at most k entries, for all adversaries A and for all transcripts t,∣∣∣ln( Pr[TA(x)=t]

Pr[TA(x′)=t] )
∣∣∣ ≤ ε.
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Any (1, ε
k )-indistinguishable mechanism is also (k, ε)-indistinguishable. To see

why, consider a chain of at most k databases connecting x and x′, where only
one entry changes at each step. The probabilities change by a factor of exp(±ε/k)
at each step, so Pr[TA(x)=t]

Pr[TA(x′)=t] ∈ exp(±ε/k)k = exp(±ε).

Claim 2.

1. A (k, ε)-indistinguishable mechanism is (k, ε)-simulatable.
2. A (k, ε)-simulatable mechanism is (k, 2ε)-indistinguishable.

Proof. (1) A mechanism that is (k, ε)-indistinguishable is (k, ε)-simulatable. The
simulator fills in the missing entries of x with default values to obtain x′ which
differs from x in at most k entries, then simulates an interaction between San(x′)
and A.
(2) A mechanism that is (k, ε)-simulatable is (k, 2ε)-indistinguishable. Suppose
that x′,x′′ agree in a set I of n − k positions. Definition 4 says that for all A
and all subsets I of n− k indices, there exists an A′ that, seeing only the rows
indexed by I, can relatively accurately simulate the distribution of transcripts
induced when A interacts with the full database. Since x′

∣∣
I

= x′′
∣∣
I

the behavior
of A′ is close to both that of the privacy mechanism interacting with A on x′

and A on x′′:∣∣∣∣ln(
Pr[TA(x′) = t]
Pr[TA(x′′) = t]

)
∣∣∣∣ ≤

∣∣∣∣∣ln(
Pr[TA(x′) = t]
Pr[A′(x′

∣∣
I
) = t]

)

∣∣∣∣∣+
∣∣∣∣∣ln(

Pr[A′(x′′
∣∣
I
) = t]

Pr[TA(x′′) = t]
)

∣∣∣∣∣ ≤ 2ε.

(7)

Simulatability states that for any i, little more is learned about individual
i by an adversary interacting with the access mechanism than what she might
learn from studying the rest of the world.

Simulatability still leaves implicit what, exactly, the adversary can compute
about the database. Semantic security captures a more computationally-flavored
meaning of privacy. Given an informed adversary, who knows x

∣∣
I
, we say a x′ ∈

Dn is consistent if it agrees with the adversary’s knowledge; i.e. x′
∣∣
I

= x
∣∣
I
. A

consistent probability distribution D is a probability distribution over consistent
databases.

Definition 6. A mechanism is (k, ε)-semantically secure if every interaction
with an informed adversary results in a bounded change in the a-posteriori prob-
ability distribution. That is, for all informed adversaries A, for all consistent
distributions D, for all transcripts t, and for all predicates f : Dn → {0, 1} :∣∣∣∣ln(

Pr[f(x′) = 1]
Pr[f(x′) = 1|TA(x′) = t]

)
∣∣∣∣ ≤ ε. (8)

The probabilities are taken over the coins of A,San and choices of consistent x′

according to D.
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Claim 3. A mechanism is (k, ε)-indistinguishable iff it is (k, ε)-semantically-
secure.

Proof. (1) Let San be a (k, ε)-indistinguishable mechanism, and assume San is
not (k, ε)-semantically-secure. Using Bayes’ rule, we get that for some f and t:

ln(
Pr[f(x) = 1]

Pr[f(x) = 1|TA(x) = t]
) = ln(

Pr[TA(x) = t]
Pr[TA(x) = t|f(x) = 1]

) > ε. (9)

Pick a consistent x0 that maximizes Pr[T (x0) = t] subject to f(x0) = 0.
Clearly, Pr[T (x0) = t] ≥ Pr[TA(x) = t]. Similarly, pick a consistent x1 ∈ D that
minimizes Pr[T (x1) = t] subject to f(x1) = 1. We get that

ln(
Pr[TA(x0) = t]
Pr[TA(x1) = t]

) > ε. (10)

Noting that dH(x1,x2) ≤ k we get a contradiction to the mechanism being
(k, ε)-indistinguishable.
(2) Let San be a (k, ε)-semantically-secure mechanism, and assume San is not
(k, ε′)-indistinguishable. That is, there exist x0,x1 such that dH(x0,x1) ≤ k and
a possible transcript t such that∣∣∣∣ln(

Pr[TA(x1) = t]
Pr[TA(x0) = t]

)
∣∣∣∣ > ε. (11)

Wlog, assume Pr[TA(x0) = t] > Pr[TA(x1) = t], and that x0,x1 agree on their
first K = n − k coordinates. Let A be an informed adversary that knows these
entries, and D be a consistent distribution that assigns probability α to x0 and
1−α to x1. Finally, take f to be any predicate such that f(xb) = b. We get that

Pr[f(x′) = 1|TA(x′) = t] =
Pr[TA(x1) = t] · Pr[f(x′) = 1]

α · Pr[TA(x0) = t] + (1− α) · Pr[TA(x1) = t]
, (12)

and hence

ln(
Pr[f(x′) = 1]

Pr[f(x′) = 1|TA(x′) = t]
) = ln(1− α + α

Pr[TA(x0) = t]
Pr[TA(x1) = t]

) > ln(1− α + αeε).

(13)
Taking α → 1 yields the claim.


