Microsoft[®] Research

Privacy for Network Data

Many types of data can be represented as graphs where

- nodes correspond to individuals
- edges capture relationships
- "Friendships" in online social network
- Financial transactions
- Email communication
- Health networks (of doctors and patients)
- Romantic relationships

Such graphs contain potentially sensitive information.

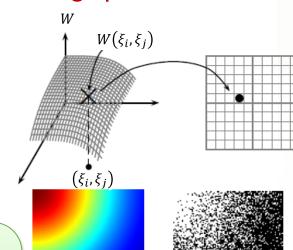
This paper: Algorithms for learning complex, nonparametric generative graph models subject to strong, node-level privacy guarantees

Goal: Estimation of Graphons

Graphons provide a complex generative model for graphs

- Extremely general
- Includes stochastic block models as special cases
- Deep connections to limits of graph sequences (e.g., [BCLSV'08, '12])

A graphon is a function $W: [0,1]^2 \to \mathbb{R}^+$. Typical examples


• k-block graphons (constant on the cells of a $k \times k$ grid)

- Smooth graphons (e.g., Hölder continuous)
- A graphon W defines a family of distributions on graphs:
- Given a size n and target density $\rho \in \mathbb{R}^+$, define $G_n(\rho W)$: - Select $\xi_1, \dots, \xi_n \in [0,1]$ uniformly, i.i.d.
- Form matrix $H \in [0,1]^{n \times n}$, where $H_{ii} = \min(1, \rho W(\xi_i, \xi_i))$ - For each $i, j \in [n]$ add edge (i, j) to G with prob H_{ij} (independently)

W-random graphs provide a rich, nonparametric model for graphs

- The set [0,1] can model any set of "vertex types"
- Captures all exchangeable graph distributions in the limit
- \succ Similar the role of IID distributions in de Finetti's theorem [DJ'09]

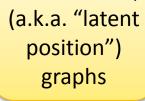
Goal: given $G \sim G_n(\rho W)$, where $\rho \in (0,1)$ and $||W||_1 = 1$, estimate ρ and W

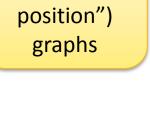
for all events S,

Edge- vs node-level privacy [HLMJ'09]

Edge differential privacy

Node differential privacy *G*:


Node privacy is stronger, but few node-private algorithms are known.


- Reidentifying individuals based on external sources Social networks
- Computer networks
- Composition attacks
- Reconstruction attacks
- Membership attacks

Previous work on private graph analysis

- Many works on edge privacy [NRS'07] Wide variety of functionalities: cut estimation, subgraph counts, ... Estimators for high-dimensional models, starting with [MW'13]
- Few works on node privacy
- Initial results assume known degree bound for privacy [GHLP'12]
- Existing works focus on subgraph counts [BBDS'13, KNRS'13, CZ'13] Estimation of degree distribution [RS'15]
- Main challenge for node private algorithms: sensitivity \succ In sparse graphs, most natural analyses can be completely disrupted by adding a vertex with arbitrary set of edges
- Private algorithms must be insensitive even in worst case

"W-random", (a.k.a. "latent position") graphs

Private Graphon Estimation for Sparse Graphs

Christian Borgs

Jennifer T. Chayes

Microsoft Research, New England

Differential Privacy for Graphs Trusted Users curator Government, businesses researchers malicious adversary

• G and G' are neighbors if they differ in one person's data

- Neighboring datasets induce close distributions on outputs
- **Definition** [DMNS'06]: Randomized algorithm A is ϵ -differentially private if for all data sets G and G' that "differ in one element" and
 - $\Pr[A(\mathbf{G}) \in S] \le e^{\epsilon} \cdot \Pr[A(\mathbf{G}') \in S].$

Two graphs are **neighbors** if they differ in **o**

ig i

Two graphs are **neighbors** if one can be obtained from the other by deleting one node and its adjacent edges.

Why strong guarantees?

- Anonymized data isn't.
- Some attacks in the literature (citations in paper)

Node-level differential private alg's provably resist all of these.

- There were no previously known node-private algorithms for fitting high-dimensional network models

Main Result

Node-differentially private estimator A_{ϵ} that is consistent for every bounded graphon: $A_{\epsilon}(G_n(\rho_n W)) \xrightarrow{1} W \text{ as } n \to \infty$

as long as average degree $n\rho_n = \omega(\log n)$.

• First estimation result of this generality even without privacy. \succ Previous results made additional assumptions on W

Measuring Convergence: δ_2 metric

- Many graphons generate the same distribution on graphs > Relabeling the points in [0,1] doesn't change $G_n(W)$
- Distance on graphons is defined up to "permutations" of [0,1]

• Here W^{ϕ} denotes map $(x, y) \mapsto W(\phi(x), \phi(y))$

Oracle and sampling errors

- Our algorithm approximates W using a block graphon
- \blacktriangleright Goal: compete with best k-block approximation to W

$$\delta^{(0)}(W) = \inf_{\substack{k-block\\araphons B}} \delta_2(x)$$

- Our algorithm approximates H, then W \succ Goal: compete with approximation to W provided by matrix H
 - $\epsilon_n(W) \approx \delta_2(H, W)$
- * Real definition more complicated; see pape • For every graphon W, these errors go to 0
- $\succ \epsilon_k^{(0)}(W) \to 0 \text{ as } k \to \infty \text{ and } \epsilon_n(W) \xrightarrow{a.s.} 0 \text{ as } n \to \infty.$

Precise bounds

- Our algorithm takes inputs
- $\succ \epsilon$: privacy parameter
- $\succ \Lambda$: upper bound on W
- \succ k: number of blocks in estimated graphon
- \succ G: input graph, assumed to be drawn from $G_n(\rho W)$

Theorem I: Let $W: [0,1]^2 \rightarrow [0,\Lambda]$ be a graphon, let $\rho \in (0,1)$, such that $\rho\Lambda < 1$ and $\rho n > 6\log n$, and assume $k \le \min(n\sqrt{\rho/2}, e^{\rho n/2})$. Then $\delta_2(\widehat{W}, W) \le \epsilon_k^{(0)}(W) + 2\epsilon_n(W) + O_P\left(\sqrt[4]{\frac{\Lambda^2 \log k}{\rho n}} + \Lambda \sqrt{\frac{k^2 \log n}{n\epsilon}} + \frac{\Lambda}{n\rho\epsilon}\right)$

- In paper: better bound for a nonprivate version of our algorithm Improves previously known nonprivate bounds [OW '14]
- Recently improved by [KTV '15]
- For specific families of graphons, bounds on $\epsilon_k^{(0)}(W)$ and $\epsilon_n(W)$:

I	01 /
Upper bounds for	$\epsilon_k^{(O)}(W)$
k-block graphons	0
lpha-Hölder-continuous	$O(k^{-\alpha})$

Adam Smith Pennsylvania State University

"Oracle" error: no (B, W)better block approximation "Sampling" error.

This random

variable depends

on ξ_1, \dots, ξ_n

 $\epsilon_n(W)$ $O_P(\sqrt[4]{k/n})$ $O_P(n^{-\alpha/2})$

Techniques and Proof

Least squares estimator

- We introduce and study a restricted least squares estimator > This nonprivate algorithm forms basis of our private algorithm
- On input ϵ , Λ , k, G:
- $\triangleright \hat{\rho} \leftarrow ||G||_1$ (average density of input)
- $\triangleright \hat{B} \leftarrow$ $\delta_2(B,G)$ argmin k-block graphons B with entries $\lesssim \hat{\rho} \Lambda$

 $\hat{\delta}_2$ is a "finite" version of δ_2 , where we minimize over ssignments of vertices in G to the blocks of *B*

 $\hat{\delta}_2(B,G) = \min_{\pi:[n] \to [k]} \|B_{\pi} - G\|_2$

▶ Return $\widehat{W} \leftarrow \frac{1}{2}\widehat{B}$.

Previous work [OW '14] studied maximum likelihood estimator, which is unstable when W takes small, nonzero values (not suitable for our setting)

Applying the "exponential mechanism"

Exponential mechanism [MT'07] : generic method for private optimization

- Replace "argmin" with sampling from Gibbs-like measure
- Naïve application in our case: $\Pr(\tilde{B} = B) \propto \exp\left(-\frac{\epsilon}{\Lambda} \cdot \hat{\delta}_2(B, G)\right)$

Challenge: For privacy, parameter Δ needs to upper bound changes in $\hat{\delta}_2$

- Node privacy requires limiting the influence of any single node
- We need $\Delta \ge \max_{G,G' different by \ 1 \ node} \left| \hat{\delta}_2(B,G) \hat{\delta}_2(B,G') \right|$
- Minimal value of Δ is huge, so mechanism returns useless results \succ We make several changes to achieve small Δ

Lipschitz extensions for node stability

- Main technical tool: Lipschitz extensions of graph statistics \succ Let G be the set of all labeled, finite, undirected graphs
- \succ Let $\mathcal{G}_d \subseteq \mathcal{G}$ be set of graphs of maximum degree d
- Partially ordered set under vertex-induced inclusion
- \blacktriangleright Metric structure: d(G, G') =number of vertices that must be deleted from G and/or G' to get identical graphs ("vertex distance")
- Lemma [KNRS '13]: If $f: \mathcal{G}_d \to \mathbb{R}$ is monotone and *c*-Lipschitz, then there exists $f': \mathcal{G} \to \mathbb{R}$ such that
- \succ f' agrees with f on \mathcal{G}_d
- \succ f' is monotone and c-Lipschitz.

Proof outline of main result

- Run exponential mechanism using Lipschitz extension of $\hat{\delta}_2(B,G)$ as score
- > Also restrict to matrices with entries bounded by $\rho\Lambda$
- Main steps
- \succ Show uniform concentration of scores around expectation
- Show bound on effect of Lipschitz extension
- \succ Show expectation of $\hat{\delta}_2(B,G)$ "close" to $\delta_2(B,W)$ with high probability • Novel aspects
- \succ Explicit relation to $\epsilon_n(W)$ and $\epsilon_k^{(0)}(W)$
- Convergence for all bounded graphons
- \succ Use of Lipschitz extension in exponential mechanism

PennState College of Engineering

Conclusions & Consequences	
 Private consistent graphon est Graphon estimators can be nodes Design of robust private esti- better nonprivate estimation Improved [OW] for small ρ densities be high 	robust to changes in individual imator led to
Cuts and other e	estimation tasks
 δ₂ bounds other metrics on graphor Estimation in δ₂ metric allows for es > Subgraph frequencies (number of > Density of every multi-way cut [B 	timation of triangles, clustering coefficient,)
Open Questions	
 Can our bounds be achieved efficiently? Best current algorithms take exponential time Private algorithms [this paper] Non private algorithms [OW '14, this paper, KTV '15] Known efficient algorithms are not private and have higher error, e.g., [C'15, AS'15] Can private algorithms achieve nonprivate rates? Independent work [KTV '15] gave optimal nonprivate algorithms for several parameter ranges Private algorithms are currently worse by polynomials in k, n 	
References (partial list)	
 See paper for full discussion of related work and citations. [AS'15] E. Abbe and C. Sandon. Recovering communities in the general stochastic block model without knowing the parameters. arXiv:1503.00609, 2015 [BDK'07] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x? anonymized social networks, hidden patterns, and structural steganography. In WWW 2007. [BBDS'13] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of social networks via restricted sensitivity. In <i>Innovations in Theoretical Computer Science (ITCS)</i> 2013 [BCCZ'14] C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao. An <i>L</i>_p theory of sparse graph convergence II: LD convergence, quotients, and right convergence. arXiv:1408.0744, 2014. [BCLSV'08] C. Borgs, J. T. Chayes, L. Lovasz, V. Sos, and K. Vesztergombi. Convergent graph sequences I: Subgraph frequencies, metric properties, and testing. <i>Advances in Math.</i>, 2008. [BCL'10] C. Borgs, J. T. Chayes, and L. Lovasz. Moments of two-variable functions and the uniqueness of graph limits. <i>Geometric And Functional Analysis</i>, 19(6), 2010. [BCLSV'12] C. Borgs, J. T. Chayes, L. Lovasz, V. Sos, and K. Vesztergombi. Convergent graph sequences II: Multiway cuts and statistical physics. <i>Ann. of Math.</i> 176, 2012. [C'15] S. Chatterjee. Matrix estimation by universal singular value thresholding. <i>Annals of Statistics</i>, 43(1), 2015 [CZ'12] S. Chen and S. Zhou. Recursive mechanism: towards node differential privacy and unrestricted joins. In <i>SIGMOD</i> 2013 [D'08] P. Diaconis and K. Missim. Revealing information while preserving privacy. In <i>PODS</i> 2003. 	 [DMNS'06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In <i>TCC</i> 2006. [GHLP'12] J. Gehrke, M. Hay, E. Liu, , R. Pass. Zero-knowledge privacy. In <i>TCC</i> 2012. [HLMJ'09] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree distribution of private networks. In <i>ICDM</i> 2009. [KNRS'13] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith. Analyzing graphs with node- differential privacy. In <i>TCC</i> 2013. [KTV'15] O. Klopp, A. Tsybakov, and N. Verzelen. Oracle inequalities for network models and sparse graphon estimation. arXiv:1507.04118, 2015. [M'34] E. J. McShane. Extension of range of functions. Bull. Amer. Math. Soc., 40(12):837–842, 1934. [MT'07] F. McSharery and K. Talwar. Mechanism design via differential privacy. In <i>FOCS</i> 2007. [MW'12] D. Mir and R. Wright. A differentially private estimator for the stochastic kronecker graph model. In EDBT/ICDT Workshops 2012. [NS'07] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In <i>IEEE Symp. Security and Privacy</i> 2009 [NRS'07] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In <i>STOC</i> 2007. [RV'15] S. Raskhodnikova and A. Smith. High-dimensional Lipschitz extensions and node-private analysis of network data. arXiv:1504.07912, 2015 [WO'13] P. Wolfe and S. C. Olhede. Nonparametric graphon estimation. arXiv:1309.5936, 2013.

Acknowledgments

A.S. was supported by NSF award IIS-1447700 and a Google Faculty Award. Part of this work was done while visiting Boston University's Hariri Institute for Computation and Harvard University's Center for Research on Computation and Society.

