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Introduction to parameter estimation and hypothesis testing
Let us start with a motivating example. Suppose we have a coin that may be biased. The coin has
some fixed probability p of coming up heads, but the value p is unknown to us. What procedure
should we use to find a good estimate for p? How about if we simply want to decide whether the
coin is fair or not?

These kind of questions arise in many other settings as well. For example, suppose we have
a new medical treatment that we would like to compare with the existing default treatment or a
placebo, and decide which treatment is more effective. Or we have a candidate that is running for
office and we would like to estimate the fraction of voters that will vote for the candidate. Classical
Statistics (also called frequentist Statistics) and probability theory provide us with methods for
thinking quantitatively about questions like these. In the following, we give a brief introduction
to some of the most common and widely used statistical methods. Using the coin example as a
running example, we will explore two settings: the parameter estimation setting where we have a
fixed but unknown quantity (such as the probability p of heads) that we would like to estimate, and
the hypothesis testing setting where we have a hypothesis (such as the coin is fair) that we would
like to test.

Parameter estimation by sampling

In parameter estimation, we have a fixed but unknown quantity, which we call a parameter. The
goal is to construct an estimate of this parameter that is close to the true value in some probabilistic
sense.

Consider the coin example, where the parameter that we want to estimate is the fixed but
unknown probability p of heads. A natural approach for constructing an estimate is to flip the coin
n times and estimate the probability using the fraction of heads among the n flips.

We can model the estimation procedure as a probabilistic experiment where we flip a coin
independently n times. Let Xi be a random variable indicating whether the i-th flip is heads or
not: Xi = 1 if the flip is heads and Xi = 0 otherwise. Thus we model our estimation procedure by
assuming that we have n mutually independent indicator random variables X1, X2, . . . , Xn, each
with probability p of being equal to 1. Each of the indicator variables is called a sample from the
Bernoulli(p) distribution. Let Sn be equal to the sum of the indicator variables:

Sn =
n∑
i=1

Xi.

The random variable Xn = Sn
n is called the sample mean. Intuitively (and correctly), we expect

that Xn provides a useful approximation to the unknown probability p, so let us use it as our
statistical estimate for p.
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This probabilistic model allows us to reason quantitatively about the estimate. For example,
we could ask: how many times should we flip the coin so that our estimate is within 0.1 of p with
probability at least 0.99? That is, we want

Pr
(∣∣∣Xn − p

∣∣∣ ≤ 0.1
)
≥ 0.99 or equivalently Pr

(∣∣∣Xn − p
∣∣∣ > 0.1

)
≤ 0.01.

As we know, the sum Sn is a Binomial(n, p) random variable, and it has expectation Ex(Sn) = np
and variance Var(Sn) = np(1− p). Therefore

Ex
(
Xn

)
= 1
n

Ex(Sn) = p

Var
(
Xn

)
= 1
n2 Var(Sn) = p(1− p)

n
.

Thus the expected value of our estimate is precisely the unknown value p; in Statistics, this is
referred to as an unbiased estimate: an estimate is unbiased if its expectation is equal to the true
value of the parameter. In the following, we state several theorems that are helpful for understanding
how far away a random variable can be from its expectation1.

Theorem 1 (Markov Inequality) Let X be a non-negative random variable, that is, a
random variable whose PDF fX satisfies fX(x) = 0 for all x < 0. For all x > 0, we have

Pr(X ≥ x) ≤ Ex(X)
x

.

We can equivalently restate the Markov inequality as follows.

Corollary 2 (Equivalent form of the Markov Inequality) Let X be a non-negative ran-
dom variable. For all c ≥ 1, we have

Pr(X ≥ c ·Ex(X)) ≤ 1
c
.

The Markov Inequality is usually quite weak by itself, but it allows us to get useful bounds when
we only have information about the expectation of a random variable. In our case, we also have
information about the variance of the random variable. Using the Markov inequality, we can obtain
other (more powerful) theorems. One such example is the Chebyshev Inequality.

1The proofs of these theorems can be found in LLM Chapter 20.
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Theorem 3 (Chebyshev Inequality) Let X be a random variable. For every real number
x > 0, we have

Pr(|X −Ex(X)| ≥ x) ≤ Var(X)
x2 .

We can apply the Chebyshev Inequality to our parameter estimation setting as follows. Recall
that Ex(Xn) = p and Var(Xn) = p(1− p)/n. Note that the quantity p(1− p) is maximized when
p = 1/2 and thus Var(Xn) ≤ 1

4n . Therefore it follows from the Chebyshev Inequality that

Pr
(∣∣∣Xn − p

∣∣∣ > 0.1
)
≤ Pr

(∣∣∣Xn − p
∣∣∣ ≥ 0.1

)
≤ Var(Xn)

(0.1)2 ≤ 1
4n(0.1)2 = 25

n
.

Therefore, in order to make our estimate be within 0.1 with probability at least 0.99, it suffices to
have n = 2500.

Estimation by sampling. We can extend the coin example to the following more general parameter
estimation approach. Suppose that there is a value µ that we would like to estimate; µ is often
referred to as the population mean2. Also suppose that we have a sampling procedure that
generates independent random variables X1, X2, . . . , Xn with the same expectation µ and variance
σ2. Let Sn =

∑n
i=1Xi. A statistical estimator for µ is given by the sample mean Xn = Sn

n .
Note that the random variables Xi are no longer Bernoulli random variables. Nevertheless,

we can still use the Chebyshev Inequality to analyze the quality of our estimate. By linearity of
expectation, we have

Ex(Sn) =
n∑
i=1

Ex(Xi) = nµ,

and therefore
Ex

(
Xn

)
= 1
n

Ex(Sn) = µ.

Since the variables Xi are independent, we have

Var(Sn) =
n∑
i=1

Var(Xi) = nσ2,

and therefore
Var

(
Xn

)
= 1
n2 Var(Sn) = σ2

n
.

Therefore the Chebyshev Inequality gives us the following result.

2The terms population mean and sample mean are best understood by analogy to a setting such as polling. We
have a population of voters, and a µ fraction (the population mean) of the voters support a candidate. Suppose we
sample n voters with replacement (a voter may be chosen more than once) and we let Xi be an indicator for whether

the i-th sampled person supports the candidate. The sample mean Xn =
∑n

i=1
Xi

n
is an estimate of the population

mean µ.
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Theorem 4 (Independent sampling) Let X1, X2, . . . , Xn be independent random variables
with the same expectation µ and variance σ2. Let Xn =

∑n

i=1 Xi

n . For every real number x > 0,

Pr
(∣∣∣Xn − µ

∣∣∣ ≥ x) ≤ 1
n

(
σ

x

)2
.

The independent sampling theorem gives us a quantitative way to capture how the sample mean
approaches the true mean. In particular, it proves the following result, known as the weak law of
large numbers: if the sample size is large enough, the sample mean is arbitrarily close to the true
mean, with probability close to 1.

Corollary 5 (Weak law of large numbers) Let X1, X2, . . . , Xn be independent random
variables with the same mean µ and the same finite standard deviation σ <∞. Let

Xn =
∑n
i=1Xi

n
.

Then for every ε > 0,
lim
n→∞

Pr(|Xn − µ| ≤ ε) = 1.

As we have seen, the sample mean Xn =
∑n

i=1 Xi

n gives us an estimator for µ for which we can
give quantitative guarantees on how close the estimator is to the true value using the Chebyshev
Inequality.

A natural question is whether we can obtain better quantitative bounds. As we discuss in the
following, the answer is yes. To this end, let us consider the following random variable:

Zn = Sn − nµ
σ
√
n

.

A quick calculation shows that Zn has expectation 0 and variance 1.

Ex(Zn) = 1
σ
√
n

(Ex(Sn)− nµ) = 0

Var(Zn) = 1
σ2n

Var(Sn) = 1

A surprisingly general and useful result, known as the central limit theorem, shows that the
distribution of Zn converges to the standard Normal(0, 1) distribution in the following sense.
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Theorem 6 (Central limit theorem) Let X1, X2, . . . be a sequence of independent identi-
cally distributed random variables with the same finite mean µ and finite variance σ2. Let

Zn = X1 +X2 + · · ·+Xn − nµ
σ
√
n

.

Then the CDF of Zn converges to the standard Normal CDF

Φ(z) = 1√
2π

∫ z

−∞
e−x

2/2dx,

in the sense that
lim
n→∞

Pr(Zn ≤ z) = Φ(z) for every z ∈ R.

The central limit theorem is surprisingly general, and it applies to every kind of random variables
(discrete, continuous, or mixed). The theorem is very powerful, both from a conceptual and an
applications point of view.

Going back to our coin flipping example, let us see how to use the Central limit theorem to obtain
better quantitative guarantees on the sample mean estimate Xn = X1+X2+···+Xn

n . Recall that the
Xi variables are independent Bernoulli(p) random variables, with expectation µ = p and variance
σ2 = p(1 − p). As before, we are interested in upper bounding the probability Pr(|Xn − p| > ε),
where ε is some desired accuracy (for example ε = 0.1, the value we considered earlier). As in the
statement of the Central limit theorem, we define

Zn = X1 +X2 + · · ·+Xn − nµ
σ
√
n

= nXn − np√
p(1− p)n

.

Note that

Xn = p+

√
p(1− p)

n
· Zn.

By the Central limit theorem, the CDF of Zn is approximately Normal and we will treat it at such
in our calculations. Since the Normal CDF is symmetric around the mean, we can approximate
Pr(|Xn − p| > ε) as follows:

Pr(|Xn − p| > ε) = Pr
(
|Zn| > ε

√
n

p(1− p)

)
(Since Xn − p =

√
p(1−p)
n · Zn)

≈ 2 Pr
(
Zn > ε

√
n

p(1− p)

)
(Normal CDF is symmetric)

= 2
(

1− Pr
(
Zn ≤ ε

√
n

p(1− p)

))

≈ 2
(

1− Φ
(
ε

√
n

p(1− p)

))
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Since we do not know p, we cannot look up Φ(ε
√
n/p(1− p)). Since we are content with an upper

bound on the probability Pr(|Xn − p| > ε), it suffices to replace Φ(ε
√
n/p(1− p)) by its minimum

over p ∈ [0, 1]. Φ(z) is an increasing function of z and thus Φ(ε
√
n/p(1− p)) achieves its minimum

at the value p that maximizes p(1 − p). As we saw earlier, p(1 − p) is maximized when p = 1/2.
Thus Φ

(
ε
√

n
p(1−p)

)
≥ Φ(2ε

√
n) and

Pr(|Xn − p| > ε) <
∼

2(1− Φ(2ε
√
n)).

If ε = 0.1 and n = 100, we obtain the following upper bound:

Pr(|X100 − p| > 0.1) <
∼

2(1− Φ(2)) = 0.046

Let us compare this bound with the one provided by the Chebyshev inequality. As we saw earlier,
the Chebyshev inequality gives

Pr(|Xn − p| > ε) ≤ 1
4nε2

If ε = 0.1 and n = 100, the upper bound provided by the Chebyshev inequality is 1/(4 ·100 · (0.1)2) =
0.25, which is much bigger than the upper bound provided by the Central limit theorem.

The Central limit theorem also provides us with a better upper bound on the number of samples
needed to achieve an accuracy ε with probability at least 1− δ, that is, Pr(|Xn − p| ≤ ε) ≥ 1− δ, or
equivalently Pr(|Xn − p| > ε) ≤ δ. It suffices to choose a number n of samples such that

2(1− Φ(2ε
√
n)) ≤ δ.

As before, consider ε = 0.1 and 1− δ = 0.99, and thus δ = 0.01. Then we need to choose n so that

2(1− Φ(0.2
√
n)) ≤ 0.01⇒ Φ(0.2

√
n) ≥ 0.995

From the Normal table3, we see that Φ(2.58) = 0.9951 and thus it suffices to have n = 167. This is
significantly better than the bound of 2500 samples we found using the Chebyshev inequality.

Hypothesis testing

In hypothesis testing, we have several competing hypotheses, and we want to choose one of the
hypotheses. For simplicity, we will consider the setting where we have two hypotheses.

Consider our coin example, and recall that the coin has an unknown probability p of coming up
heads. Suppose we want to test whether the coin is fair or not. We formulate two hypotheses:

• Hypothesis H0 is the hypothesis that the coin is fair (p = 1/2).

• Hypothesis H1 (or HA) is the hypothesis that the coin is biased (p 6= 1/2).

The hypothesis H0 is called the null hypothesis, and the hypothesis H1 is called the alternate
hypothesis. Our goal is to design a procedure for deciding between the two hypotheses. We will
follow a very similar approach to the one for parameter estimation, and along the way we introduce
some of the terms that are commonly used in statistical data analysis. (These concepts arise often,
so it is important to get familiar with them.)

3http://www.normaltable.com/
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As in the parameter estimation setting, a natural approach is to flip the coin n times and obtain
independent samples X1, X2, . . . , Xn, where Xi is the indicator random variable of the i-th flip
(Xi = 1 if the i-th flip is heads and Xi = 0 otherwise). As before, we let Xn =

∑n

i=1 Xi

n be the
sample mean. If the coin is fair, we have Ex(Xn) = 1/2. Therefore a natural strategy is to reject
the null hypothesis provided that Xn is sufficiently far from 1/2:

reject H0 if
∣∣∣∣Xn −

1
2

∣∣∣∣ > ε

where ε is a suitable critical value to be determined. We will set the critical value ε so that the
probability of falsely rejecting the null hypothesis is equal to a given value α, called the significance
level. The significance level α is typically small, and we will use α = 0.05 in this example.

Let us now choose the critical value ε so that the probability of falsely rejecting the null hypothesis
is at most α = 0.05. That is, we need to choose ε such that

Pr
(∣∣∣∣Xn −

1
2

∣∣∣∣ > ε
∣∣∣ H0

)
≤ α = 0.05.

We already saw that we can use the Central limit theorem to analyze the probability above. We
showed that, if n is large enough (n ≥ 30 is a good rule of thumb), the Central limit theorem gives

Pr
(∣∣∣∣Xn −

1
2

∣∣∣∣ > ε

)
≈ 2(1− Φ(2ε

√
n)),

where Φ is the Normal(0, 1) CDF. Thus it suffices to choose ε so that

2(1− Φ(2ε
√
n)) ≤ 0.05⇒ Φ(2ε

√
n) ≥ 0.975

By looking up the Normal table, we see that Φ(1.96) = 0.975 and thus we can set ε = 1.96/(2
√
n).

For example, if n = 1000, a critical value of ε ≈ 0.031 suffices to obtain a significance level of 0.05.
Note that in this case we reject the null hypothesis if |

∑n
i=1Xi − 500| ≥ 31.

In hypothesis testing, the guarantee that we obtained is sometimes stated in the following way:
the null hypothesis H0 is not rejected at a significance level of 0.05. It simply means that the
probability of false rejection is at most 0.05. Note that the term used is not rejected, as opposed to
accepted, since our analysis cannot firmly establish that the coin has probability of heads precisely
equal to 1/2 (for instance, we cannot firmly distinguish between a probability of heads equal to 1/2
and 0.51).

We can summarize and generalize the salient points of the coin example to obtain a general
methodology for hypothesis testing.
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Significance testing methodology. The goal is to perform a statistical test of a
hypothesis H0 based on samples X1, X2, . . . , Xn.

The following steps are performed before the samples are observed.

(a) Choose a statistic S, that is, a random variable that will summarize the data.
Mathematically, we choose a function h : Rn → R, which gives us the statistic
S = h(X1, X2, . . . , Xn). In the coin example, S = 1

n

∑n
i=1Xi.

(b) Specify the rejection region, that is, the set of values of S for which H0 will be
rejected as a function of the critical value ε (the critical value ε will be determined
later). In the coin example, the rejection region is

{
s ∈ [0, 1] :

∣∣∣s− 1
2

∣∣∣ > ε
}
.

(c) Choose the significance level, that is, the desired probability α of a false rejection
of H0. In the coin example, we used α = 0.05.

(d) Choose the critical value ε so that the probability of false rejection is approximately
equal to α. In the coin example, we set ε = 1.96/(2

√
n) to obtain a significance level

α = 0.05.

Once the values x1, x2, . . . , xn of X1, X2, . . . , Xn are observed:

(i) Calculate the value s = h(x1, x2, . . . , xn) of the statistic S.

(ii) Reject the hypothesis H0 if s belongs to the rejection region.

Remarks on choosing the statistics. Note that there is no universal method for choosing a
statistic. In some specific settings, such as the coin example, there is a natural choice that can
be justified mathematically. In some other settings, we may not be so fortunate, and choosing
a statistic is a bit of an art. In the following, we briefly discuss two test statistics for normally
distributed samples. These are useful in many settings (in light of the Central limit theorem), and
they are further explored in lab 5.

Hypothesis testing for samples with a Normal distribution

Let X1, X2, . . . , Xn be independent samples from a Normal(µ, σ2) distribution. The mean µ is
unknown. The variance σ2 may be known or unknown, and we consider each of these cases separately.
Our goal is to design decision procedures for hypothesis tests involving the unknown mean µ. We
consider the following types of tests:

• Double-tailed test: H0 : µ = µ0, H1 : µ 6= µ0.

• Left-tailed test: H0 : µ = µ0, H1 : µ < µ0.

• Right-tailed test: H0 : µ = µ0, H1 : µ > µ0.

No matter what type of test we consider, we can use the following test statistics, depending on
whether the variance σ2 is known or unknown.

Case 1: the variance σ2 is known. If the null hypothesis is true, we have µ = µ0 and thus
nXn−nµ0
σ
√
n

has the Normal(0, 1) distribution. This suggests using the following test statistic, called a
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z-test (we will use Zn instead of S to denote the statistic, to emphasize its connection to the Zn
random variable from the Central limit theorem):

Zn = nXn − nµ0
σ
√
n

= Xn − µ0
σ√
n

=
√
n
Xn − µ0

σ
.

Note that Zn behaves differently depending on whether µ = µ0, µ < µ0, or µ > µ0. To see this, it is
helpful to write Zn as follows:

Zn =
√
n
Xn − µ0

σ
=
√
n
Xn − µ+ µ− µ0

σ
=
√
n
Xn − µ

σ
+
√
n
µ− µ0
σ

The first term
√
nXn−µ

σ has a Normal(0, 1) distribution. As n→∞, the second term is 0 if µ = µ0,
it diverges to −∞ if µ < µ0, and it diverges to +∞ if µ > µ0. As we discuss later, we can design a
test procedure based on this behavior of Zn.

Case 2: the variance σ2 is unknown. Since we do not know the variance, we can no longer use
the z-test. It is useful to consider the sample variance, which is defined as

S2
n = 1

n− 1

n∑
i=1

(Xi −Xn)2

We can show that Ex(S2
n) = σ2, and thus S2

n is an unbiased estimator for the variance (we leave
this as an exercise, see the practice problem sheets). A natural approach is to replace the unknown
variance σ2 by the sample variance S2

n in the z-test. The resulting statistic, denoted by Tn, is called
a t-test:

Tn = nXn − nµ0
Sn
√
n

= Xn − µ0
Sn√
n

=
√
n
Xn − µ0
Sn

Recall that, if H0 is true, Zn has a Normal(0, 1) distribution. This is no longer the case for Tn.
If H0 is true, Tn has a different distribution, called the Student t-distribution with n− 1 degrees of
freedom. There are calculators for the CDF for the t-distribution that one can use4; note that there
is a different CDF for each value of n. The expectation of the t-distribution with (n− 1) degrees of
freedom is equal to 0 if n ≥ 2, and it is undefined otherwise. The variance is equal to n−1

n−2 if n ≥ 4,
∞ if n = 3, and it is undefined otherwise.

Similarly to Zn, Tn behaves as follows: if µ = µ0, Tn has the t-distribution with (n− 1) degrees
of freedom; if µ < µ0, Tn → −∞; if µ > µ0, Tn → +∞.

Significance testing. We can use the appropriate test statistic S (S = Zn if σ2 is known, and
S = Tn if σ2 is unknown) as part of the significance testing methodology we saw earlier.

Recall the behavior of the statistic: if µ = µ0, S has a distribution with known CDF F that is
symmetric, meaning that Pr(X ≥ x) = Pr(X ≤ −x) for all x ∈ R; if µ < µ0, S → −∞; if µ > µ0,
S → +∞. We can design a test procedure based on this behavior as follows. We consider each type
of tests in turn.

• Double-tailed tests: H0 : µ = µ0, H1 : µ 6= µ0.
4http://stattrek.com/online-calculator/t-distribution.aspx
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In this case, an indication that H1 is true would be if |S| becomes too large, i.e., S → ±∞.
Therefore we consider the decision rule:

H =
{
H0 if − ε ≤ S ≤ ε
H1 if |S| > ε

The value ε (the critical value) depends on our desired significance level α. More precisely, we
need to set ε so that

Pr(H = H1 | H0) = Pr(|S| ≥ ε | H0) ≤ α.

Conditioned on H0, S has a distribution with symmetric CDF F and thus

Pr(|S| ≥ ε | H0) = 2 Pr(S ≥ ε | H0) = 2(1− F (ε)).

Thus it suffices to set ε so that 2(1− F (ε)) ≤ α, or equivalently F (ε) ≥ 1− α
2 . We can do so

by looking up F values in the appropriate table.
Example. For example, suppose we want to use a t-test for n = 10 samples, and our goal is
to have a confidence level α = 0.05. Thus we need to set ε so that F (ε) = 0.975. The degrees
of freedom for the t-distribution are n− 1 = 9. Using the CDF calculator for the t-distribution
with 9 degrees of freedom, we find that ε = 2.262.

• Left-tailed tests: H0 : µ = µ0, H1 : µ < µ0.
In this case, an indication that H1 is true is that S → −∞. Therefore we consider the following
decision rule:

H =
{
H0 if S ≥ ε
H1 if S < ε

Similarly to the double-tailed case, the choice of ε is based on the condition:

Pr(H = H1 | H0) = Pr(S < ε | H0) = F (ε) ≤ α

• Right-tailed tests: H0 : µ = µ0, H1 : µ > µ0.
In this case, an indication that H1 is true is that S → +∞. Therefore we consider the following
decision rule:

H =
{
H0 if S ≤ ε
H1 if S > ε

The choice of ε is based on the condition:

Pr(H = H1 | H0) = Pr(S > ε | H0) = 1− F (ε) ≤ α

The p-value of a test statistic. We can summarize the decision procedures discussed above using
a concept called p-value. Let S be the statistic (S = Zn or S = Tn). Suppose that we observe the
values x1, x2, . . . , xn of the samples X1, X2, . . . , Xn. Let s = h(x1, x2, . . . , xn) be the value of our
test statistic. The p-value of this observed statistic is the following probability:

• For a double-tailed test, the p-value is 2 Pr(S > |s| | H0).
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• For a left-tailed test, the p-value is Pr(S < s | H0).

• For a right-tailed test, the p-value is Pr(S > s | H0).

The p-value can be understood as a probability, given that H0 is true, of observing an S-statistic
value equally or less likely than the one we observed. If the p-value is small, the observed S-statistic
is very unlikely under the null hypothesis, and thus we have strong evidence to reject H0. This
leads to the following decision procedure: reject H0 if and only if the p-value ≤ α.

Example. Suppose we have n = 64 random samples from the Normal(µ, 102) distribution,
and the observed sample mean is 73. Consider the right-tailed hypothesis test H0 : µ = 70,
H1 : µ > 70. Since the variance is known, we can perform a z-test. The observed statistic is
z = (73− 70)/(10/

√
64) = 2.4. By looking up the Normal table, we obtain the p-value as follows:

the p-value is Pr(Zn > z) = 1− Pr(Zn ≤ z) = 1− Φ(2.4) = 1− 0.9918 = 0.0082 < 0.05. Thus we
reject the null hypothesis for the significance level α = 0.05.
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