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—— Abstract
We study the problem of routing symmetric demand pairs in planar digraphs. The input consists
of a directed planar graph G = (V,E) and a collection of k source-destination pairs M =
{s1t1,...,sktr}. The goal is to maximize the number of pairs that are routed along disjoint
paths. A pair s;t; is routed in the symmetric setting if there is a directed path connecting s; to t;

and a directed path connecting ¢; to s;. In this paper we obtain a randomized poly-logarithmic
approximation with constant congestion for this problem in planar digraphs. The main technical
contribution is to show that a planar digraph with directed treewidth A contains a constant
congestion crossbar of size Q(h/polylog(h)).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Disjoint paths, symmetric demands, planar directed graph

1 Introduction

Disjoint path problems are well-studied routing problems with several applications and fun-
damental connections to algorithmic and structural results in combinatorial optimization
and graph theory. Canonical problems here are the edge-disjoint paths problem (EDP) and
the node-disjoint paths problem (NDP) in undirected graphs. In both these problems the
input consists of an undirected graph G = (V, E) and k node-pairs {s1t1,. .., Sxtr}. In EDP
the goal is to connect the pairs by edge-disjoint paths and in NDP the goal is to connect
the pairs by node-disjoint paths. The decision versions of these problems are NP-Complete
when k is part of the input. The seminal work of Robertson and Seymour showed that both
these problems are fixed parameter tractable when parameterized by k, the number of pairs.
In this paper we are concerned with an optimization version of the problems where the
goal is to maximize the number of input pairs that can be routed via edge or node-disjoint
paths. To avoid notational overload we will henceforth use EDP and NDP to refer to these
maximization versions.

The approximability of EDP and NDP has been extensively studied but our understand-
ing is still limited. The best known approximation for both these problems is O(y/n) [9, 31]
(here n is number of nodes in G) while current hardness of approximation results only rule
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out an O(logl/ 2=e n) approximation [2]. Even in planar graphs the best approximation up

to very recently was O(y/n), with a slight improvement just announced [16]. One of the
reasons for this state of affairs is that the natural multicommodity flow relaxation has an in-
tegrality gap of ©(y/n). On the other hand, two closely related relaxations of these problems
have seen significant progress in the last decade. ANF is the relaxation of the disjoint paths
problem where a subset of the input pairs M’ is routed if there is a feasible multicommodity
flow in the graph that routes one unit of flow for each pair in M’. A second relaxation is
to allow some small constant congestion c, i.e., instead of the pairs being routed on disjoint
paths we allow up to ¢ paths to use a given edge or node. ANF admits a poly-logarithmic
approximation [11, 8]. A series of breakthroughs [33, 1, 13] culminated in a poly-logarithmic
approximation for EDP with congestion 2 by Chuzhoy and Li [17]. These ideas have been
extended to NDP as well [6, 4]. These results have been made possible by a number of non-
trivial ideas and techniques at the intersection of algorithms, combinatorial optimization and
graph theory. In particular, the results have been enabled by and contributed to a deeper
understanding of the structure of undirected graphs via the notion of treewidth. Treewidth
is a well-known graph parameter that plays a fundamental role in the graph-minor theory
of Robertson and Seymour; see [3, 4, 5, 14] for some of the recent results.

It is natural to study disjoint paths problems also in directed graphs. Here the graph G
is directed and the input pairs M = {(s1,t1),..., (Sk, tx)} are ordered and we seek to find a
maximum cardinality subset of M that can be connected by disjoint paths'. Unfortunately,
it has been shown that disjoint paths problems are highly intractable in directed graphs.
It is known that even the simpler case of ANF and with congestion ¢ allowed is hard to
approximate to within a factor of nf(1/¢) [15]; moreover this holds in acyclic graphs.

A recent paper by a subset of the authors [7] initiated the study of maximum throughput
routing problems in directed graphs where the demand pairs are symmetric. Here the graph
G is directed but the input pairs are unordered as in the undirected setting. Routing a pair
s;t; requires finding a path that connects s; to t; and a path connecting ¢; to s;. We use
Sym-Dir-EDP, Sym-Dir-NDP and Sym-Dir-ANF to denote the analogues of EDP, NDP and
ANF respectively in this setting. A detailed motivation for the study of this model is given
in [7]. Here we briefly outline some of the key points.

The model is motivated by both theoretical and practical considerations. On the theoret-
ical side the model generalizes (modulo constant congestion) the edge and node disjoint paths
problems in undirected graphs. Moreover, flow-cut gaps in this model have been studied in
the past and have close connections to various problems including feedback edge/vertex set
problems [30, 37, 21, 10]. From the more practical side there are several scenarios where
the communication between users is symmetric while the underlying network that supports
the communication may be asymmetric (hence modeled as a directed graph); see [26, 25] for
instance.

Unlike the case of directed graph routing problems, the symmetric model exhibits tract-
ability. In particular, the well-linked decomposition framework for undirected graphs extends
to a large extent to this model [7].

To resolve the complexity of disjoint path problems in the symmetric model one needs to
understand the structure of directed graphs as a function of their directed treewidth [23, 34],
that we denote by dtw(G). As we mentioned, the interplay between algorithmic questions
and graph structure theory for undirected graphs has been very successful in the recent past.

1 Although edge and node disjoint paths problems are equivalent in general directed graphs, this is not
necessarily the case in restricted graph classes such as planar graphs.
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There has been recent significant progress on the graph theoretic side on directed treewidth;
in particular Kawarabayashi and Kreutzer recently established the excluded grid theorem
in directed graphs [27, 28].

The main technical contribution of [7] is to generalize the well-linked decomposition
framework of [8] to the symmetric demands setting in directed graphs. As a consequence,
[7] obtained a poly-logarithmic approximation with constant congestion for Sym-Dir-ANF.
The central open question they raised is the following: Is there a poly-logarithmic ap-
prozimation for Sym-Dir-NDP with constant congestion in general directed graphs? It was
shown in [7] that this can be answered in the positive by addressing the following ques-
tion which is the analogue that was raised in [8] for undirected graphs: If a directed graph
G has directed treewidth h, does it have a constant congestion routing structure (cross-
bar) of size Q(h/polylog(h))? Note that grid-minor theorems establish such a connection
between treewidth and routing structures, however, the quantitative relationship between
the treewidth and the size of the grid is too weak to prove any meaningful approximation for
the routing problem. On the other hand, the routing problem has the flexibility of allowing
a large constant congestion which enables one to prove the existence of routing structures
that are not as rigid as a grid; this relaxation has been the key to algorithmic success on
routing. We also note that it is NP-Complete to decide whether a single pair can be routed
without congestion in the symmetric setting [22]; thus a congestion of at least 2 is necessary
for a non-trivial approximation ratio.

In this paper we take a step towards the general problem by addressing the important
special case of planar graphs. Our main algorithmic result is the following.

» Theorem 1. There is a randomized poly-logarithmic approrimation for Sym-Dir-NDP in
planar directed graphs with congestion 5.

The approximation algorithm in the preceding theorem is derived via a natural mul-
ticommodity flow relaxation for the problem. The main new technical ingredient is a graph
theoretic result that shows that if a planar digraph has directed treewidth h then it has a
constant congestion crossbar of size Q(h/polylog(h)). We remark that an undirected planar
graph with treewidth h has a grid-minor (which is a congestion 2 crossbar) of size Q(h).
In contrast the known relationship between treewidth and grid-minors in directed planar
graphs is much weaker; recent work [27, 28] only shows that there is a directed-grid of size
f(h) for some weakly growing function of h. We hope that our crossbar result could be used
as a starting point to improve the quantitative bound on the grid-minor theorem for planar
digraphs.

1.1 Overview of the Algorithm and Technical Contributions

Here we give a brief outline of the high-level details of the algorithm and some of our
technical contributions. Let (G, M) be an instance of Sym-Dir-NDP, where G = (V, E) is
a directed planar graph with unit node capacities, and M = {s1t1, ..., sgtx} is a collection
of source-destination pairs. We refer to the nodes participating in M as terminals, and we
use T to denote the set of terminals. It is convenient to assume that the pairs M form a
matching on 7T .

Well-linked sets: A key notion that we make use of is well-linkedness. Given a directed
graph G = (V, E) a subset of nodes X C V is said to be well-linked if for any two disjoint
subsets Y and Z of X of equal size, there exist |Y| node-disjoint paths from Y to Z; note
that the definition is symmetric since we can swap Y and Z. We need a relaxation of well-
linkedness. For some parameter 8 € [0,1], X is g-well-linked if for all disjoint ¥, Z C X
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of equal size there are |Y| paths from Y to Z such that no node is in more than [1/3]
of these paths; in other words, the node-congestion caused by the paths is at most [1/3].
The case § = 1 corresponds to well-linkedness. It is well-known that in both directed
and undirected graphs well-linkedness is closely connected to treewidth. More precisely, a
graph has treewidth k iff it has a well-linked set of size ©(k); see [34]. Moreover, if X is
B-well-linked in G then the treewidth of G is Q(8|X|).

Algorithm: Here we outline the high-level steps of our algorithm.

1. Solve a multicommodity flow based LP relaxation that routes each pair s;t; fractionally
to an amount x; € [0, 1] to maximize Zle x;. See Fig. 2 and the description in Section 2.

2. Use the LP relaxation and the well-linked decomposition framework from [7] to reduce
the problem, at the loss of a poly-logarithmic factor in the approximation, to instances
in which the terminals 7 are a-well-linked for some fized constant c.

3. Assuming that 7 is a-well-linked in G we have dtw(G) = (k) where k = |T|. Using
this fact show that G has a large routing structure and use this structure to route a large
number of terminal pairs. Use the following steps.

a. From G obtain an Eulerian multigraph H = (V, Ey) whose support is a subgraph
of G such that (i) T is o/-well-linked in H for o/ = Q( and (ii) A(H), the
maximum degree in H, is polylog(k).

b. Using the fact that H is Eulerian, has treewidth Q(k/polylog(k)), and has max-
imum degree polylog(k), show that it has a cylinder-like routing structure of size
Q(k/polylog(k)). See Fig. 1.

c. Route terminals to the routing structure and use it to connect a large number of input
pairs.

SoTIEC))
polylog(k)

The preceding algorithm follows the general framework that has been very successful
in the undirected graph setting in the recent past. The first two steps follows the well-
linked decomposition framework from [8] that has been extended to the symmetric demand
instances in directed graphs by [7]. This framework allows one to reduce, via the LP re-
laxation, general instances to instances in which the terminals are well-linked. This incurs
a poly-logarithmic factor loss in the approximation. With this reduction in place we have
the following property for our instance. The graph G has a terminal set 7 of size h and
since T is a-well-linked for some fixed constant a, G has directed treewidth Q(h). Now, the
remaining task is to show a graph-theoretic result that any directed graph with treewidth
h has a constant congestion crossbar routing structure of size Q(h/polylog(h)). By crossbar
we mean a directed graph H with an interface I C V(H) with the following property: any
matching on I can be routed in a symmetric fashion in H with constant congestion. The
idea then is to route the terminals to the interface of the crossbar and use it to route the
desired matching on the terminals.

In undirected planar graphs if G has treewidth h then it has grid-minor of size Q(h) [36],
and this grid-minor can be used as a crossbar to route Q(h) input pairs (see [8] for instance).
What about directed graphs? Johnson et al. [23], who introduced the notion of directed
treewith, conjectured that any directed graph with sufficiently large treewidth contains a
cylindrical grid (see Fig. 1) as a butterfly minor. The cylindrical grid can be used as a
crossbar. In an unpublished manuscript, Johnson et al. [24] outlined a proof for the case
of planar graphs. Kawarabayashi and Kreutzer [27] recently gave a different proof for the
planar and minor-free case, and very recently gave a proof for all graphs [28]. However, as
we already mentioned, the quantitative relationship between the size of the cylindrical grid
and treewidth is very weak. Hence, these results would not yield any meaningful results
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for our routing problem. Here, we build on the high-level ideas in the work of Johnson
et al. [24] to establish our main result which gives a constant congestion crossbar of size
Q(h/polylog(h)) where h is the treewidth of G; our result applies only to planar graphs and
establishing a similar result for general graphs is a challenging open problem. Due to space
constraints we only mention the key steps.

A key insight from [24] is that given directed graph G one can create an Eulerian multi-
graph H of bounded degree whose support is a subgraph of G such that dtw(H) > f(dtw(G))
for some function f. Eulerianness as well as small degree are critical for further manipu-
lations. Our first contribution is to show that H can be chosen such that (i) dtw(H) =
dtw(G)/polylog(dtw(G)) and (i) the maximum degree in H, A(H) = O(log® dtw(G)). For
this purpose we use Louis’s extension of the cut-matching game of Khandekar, Rao and
Vazirani [29] to directed graphs [32], combined with the well-linked decomposition frame-
work of [7, 8].

» Theorem 2. Suppose that there is a polynomial time algorithm for Q(1)-node-well-linked
instances of Sym-Dir-NDP in planar directed Eulerian graphs of maximum degree A that
achieves a B(A)-approzimation with congestion c¢. Then there is a polynomial time random-
ized algorithm that, with high probability, achieves a B(O(log®k)) - O(log® k) approzimation
with congestion ¢ for arbitrary instances of Sym-Dir-NDP in planar directed graphs, where
k is the number of pairs in the instance.

Another key insight from [24] is to consider the undirected version of G, denoted by
GYN, to obtain a large undirected grid-minor using the fact that tw(GYN) = Q(dtw(G)). In
particular this allows the construction of several disjoint concentric directed cycles in G by
exploiting the structure of the grid, Eulerianness, and planarity. We follow their ideas and
show that the entire construction can be done in polynomial time to yield Q(dtw(H)/A(H))
concentric disjoint cycles.

The final step is to find many disjoint paths that cross the concentric cycles from the
inner cycle to the outer cycle and many disjoint paths from the outer cycle to the inner
cycle. We show that we can find such paths via some ideas in [24] but with the additional
property that these paths originate at the terminals. The collection of concentric cycles with
these crossing paths is our desired crossbar and we also obtain the required property that
the terminals are linked to this crossbar. We note that [24] have to do considerable work to
obtain the cylindrical grid while we are satisfied with the constant congestion properties of
the cycles plus paths (see Fig.1).

In the end, we arrive at the following statement whose proof is presented in Section 3.

» Theorem 3. Given a plane directed Eulerian graph G of maximum in-degree at most A

and an a-node-well-linked set X in G with |X| = Q(A?/a), one can in polynomial time

find a set of Q(a|X|/A) concentric cycles going in the same direction (i.e., all clockwise

or all counter-clockwise), sets Y*, Y~ C X of size |YT| = |Y | = Q(a?|X|/A?) each, and

families Pt and P~ of node-disjoint paths, such that either

(1) none of the cycles enclose any vertex of Y'Y U Y™, the family PT consists of Y|
node-disjoint paths from YT to the innermost cycle, and the family P~ consists of |Y ™|
node-disjoint paths from the innermost cycle to Y~ ; or

(2) all cycles enclose YT UY ™, the family P consists of |Y V| node-disjoint paths from YT
to the outermost cycle, and the family P~ consists of |Y ~| node-disjoint paths from the
outermost cycle to Y .

Although we are inspired by [24], in the proof of Theorem 3 we use different methodology
based on well-linked sets. We also point out that there are significant technical hurdles
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Figure 2 Relaxation Sym-Dir-NDP LP.

in working with directed graphs and treewidth. For instance, one can prove that if an
undirected graph has treewidth & then it has Q(k/logk) disjoint cycles. This is closely
related to the well-known Erdos-Posa theorem [20]. Relating treewidth and disjoint cycles
in directed graphs is significantly harder and was resolved in [35] (and also via the more
recent result [28]) but the quantitative relationship is weak and far from the known lower
bounds.

Using Theorem 3, we show the following statement, which in turn, together with The-
orem 2, immediately yields Theorem 1.

» Theorem 4. There is an O(A%/a?) approzimation with congestion 5 for Sym-Dir-NDP in
instances for which the input digraph is planar and Eulerian with mazimum degree A, and
the terminals are a-node-well-linked for some a < 1.

In this extended abstract, we focus on proving Theorem 3 on constructing the crossbar
in Section 3, and we defer the remaining details and proofs to a longer version of this paper.

2 Preliminaries on LP Relaxation and plane Eulerian digraphs

LP relaxation. Our algorithm uses a standard multicommodity flow relaxation for the
problem given in Figure 2. We use P(u,v) to denote the set of all paths in G from u to v,
for each ordered pair (u,v) of nodes. Our assumption that the pairs M form a matching
ensures that the sets P(s;,t;), P(ti,si), P(s;,t;) and P(t;,s;) are pairwise disjoint. Let
P = Ule(P(si, t;)UP(t;, s;)). The LP has a variable f(p) for each path p € P representing
the amount of flow on p. For each (unordered) pair s;t; € M, the LP has a variable z;
denoting the total amount of flow routed for the pair (in the corresponding IP, x; denotes
whether the pair is routed or not). The LP imposes the symmetry constraint that there is
a flow from s; to t; of value z; and a flow from ¢; to s; of value x;. Additionally, the LP has
capacity constraints that ensure that the total amount of flow on paths using a given node
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is at most one.?

It is convenient to assume that the pairs M form a matching on 7 and each terminal
is a leaf of G, i.e., it is attached to a single neighbor using an edge in each direction. As
shown in [7], these properties can be ensured as follows. Given an instance (G, M) with
terminal T, we create a new instance (G’, M') by attaching a new leaf neighbor ¢’ to every
t € T with arcs (¢,¢') and (¢,t), and move the terminal ¢ to ¢'. Given a solution to the LP
relaxation on (G, M), we can easily find a solution of at least half of the value by extending
the flow along arcs (¢,t') and (¢, t); the loss of the flow is due to potential capacity violation
at vertex t that is now counted twice along the flow paths. If we obtain an integral solution
in (G', M) (i.e., a routing of some pairs from M) with congestion ¢ > 1, by shortening the
paths we obtain a routing with the same congestion in (G, M).

Plane Eulerian Digraphs: First, let us recall the following lemma that encapsulates the
main property of Eulerian digraphs that make them similar to undirected graphs.

» Lemma 5. Let G be an Eulerian digraph of mazimum in-degree A, let A, B C V(G), and
let ¢ be an integer. If there exist (A + 1)¢ + 1 undirected vertex-disjoint paths from A to B
in G, then there exist £ 4+ 1 directed ones as well.

We also need some notation with respect to planar embeddings. Let II denote the euclidean
plane. For a closed Jordan curve v and a point p € IT\ v, by () € Z we denote the element
of the fundamental group of IT \ {p} where v belongs (with the convention that a clockwise
cycle around p is the +1 element). A Jordan curve v is in general position with respect
to the plane graph G if it has finite number of intersections with G, its starting point and
ending point do not belong to G, and whenever a point p lies both on v and in the interior
of an edge e € E(G), then v traverses the edge e at this point. A face-edge curve in a plane
digraph G is a Jordan curve in general position that does not traverse any vertex of G.

For a curve v in general position with respect to GG, we introduce the following notions.
Assume ~ intersects an edge e while going from a face f to a face f’. If e has the face f
on the right and the face f’ on the left, then we say that e crosses v from left to right and,
otherwise, if e has the face f on the left and the face f’ on the right, then we say that e
crosses 7y from right to left. By cross“??%(y) and cross®7%(y) we denote the number of
times an edge crosses « from left to right and from right to left, respectively; note that in
these numbers we may count one edge multiple times, one for each moment ~ crosses the
edge.

For a vertex v in a digraph G, an imbalance of v is the number imbg (v) := indeg (v) —
outdegs(v). A graph is balanced if imbg(v) = 0 for every v € V(G), and FEulerian if it
is additionally weakly connected. Furthermore, let the imbalance of a curve v in a general

L—>R(

position with respect to G be imb(vy) = cross ) — cross®7E (). A standard argument

shows the following:

» Lemma 6. Let v be a closed face-edge curve in a plane digraph G. Then

imb() = 3 C(7) - imbe(v).

veV(G)

2 There is a subtle issue here with regards to the capacity usage at the endpoints of a path. In the
integral solution, a pair of paths, one from s; to t; and one from ¢; to s;, is regarded as using the vertex
s; only once and using the vertex t; only once; in other words, such a pair can be seen as a simple cycle
passing through s; and ¢;. To simulate it in the LP relaxation, we consider that the starting vertex
belongs to a flow path, but the ending vertex does not belong to it. Alternatively, we can assume that
a flow path uses only half of the capacities at its endpoints; these interpretations are equivalent due to
the symmetry of the demands.
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We also need the following flow/cut duality.

» Lemma 7. Given a plane digraph G, two distinguished faces fi™ and fo, and an integer

k, one can in linear time find either:

(1) a family of directed vertex-disjoint cycles Cy,Ca, ..., Cy, all having fi* to the right and
fout to the left;

(2) a curve 7y in general position with respect to G, that starts in fi*, ends in foU, intersects
at most k vertices, and satisfies crosst = (y) = 0.

3 The crossbar construction for Eulerian graphs

We first remark that the two outcomes of Theorem 3 are the same if one considers embed-
dings on the sphere, while on the plane they differ only by the choice of the outer face of the
embedding. Furthermore, note that all paths in P* and in P~ intersect every constructed
concentric cycle due to planarity.

In the proof of Theorem 3, without loss of generality we assume that every vertex of X is
incident to one outgoing arc and one incoming arc, and these two arcs have the same second
endpoint: We can achieve it by creating a pendant vertex z’ for every x € X, connected to
x with arcs (z,z’) and (z’, x); note that the well-linkedness of X may drop to a/(a+ 1) in
this manner. Consequently, every cycle and path has no vertices in X (except for possibly
some endpoints); henceforth we will implicitly use this property multiple times.

Obtaining an undirected grid. We start by applying the construction for undirected
planar graphs from [8]. Let GUN be the underlying undirected graph of G. Clearly, X is
a-node-well-linked in GYN and thus GUN has (undirected) treewidth Q(a|X|). Hence we can
obtain a large grid minor linked to the terminals X using the following theorem of [8]. In
what follows, it is notationally more convenient to work with subdivided walls as subgraphs,
instead of minors. A ¢ x ¢ wall and a subdivided wall are shown in Figure 3. The (¢t — 1)
vertices of degree three in the top row of a t x ¢ wall I' are called the interface of the wall,
denoted Ir.

Figure 3 A wall (left) and a subdivided wall (right). The red vertices denote the interface of
the wall.
» Theorem 8 (Theorem 4.5 of [8]). For every constant o < 1, given an undirected planar
graph H and an a-node-well-linked set X in H, one can in polynomial time find an integer
t = Qa|X|), a subdivided t x t wall T in H, and a family of t node-disjoint paths connecting
X and the interface of T'.

In our construction we do not need the entire structure of a subdivided wall, but only
part of it, as in the following immediate corollary (see Fig. 4).

» Corollary 9. One can in polynomial time find an integer r = Q(a|X]) and a sequence of
node-disjoint concentric undirected cycles Cy,Cs, ..., Cy in GUN, with Cy being the outer-
most and C. being the innermost cycle, with the additional property that for every 1 <i <r
there exists r vertex-disjoint paths in GUN from X to V(C;).



Chandra Chekuri and Alina Ene and Marcin Pilipczuk

Figure 4 Illustration of Corollary 9. The cycles are blue, while the paths are dashed red.

Isles S° and S™. Let us fix a choice of r and cycles Cy,Cs,...,C, stemming from
Corollary 9. For a while, we work only with the undirected graph GUN. Our goal is to
strengthen the requirement of the existence of many undirected paths between X and the
innermost and outermost cycles by getting more properties about their endpoints, so that
we can use an argument similar to the one of [24] to reason about the existence of directed
concentric cycles with similar connectivity towards X.

To this end, we identify two small connected parts of GUN, §°% and S, one around C
and one around C,.. The parts will be large enough so that there is a substantial number
of vertex-disjoint directed paths between them and X, but small enough so that they are
placed very locally in the graph, and their boundary is small. This last property ensures
that after deletion of these parts, the graph is close to Eulerian, and we can make use of
Lemma 6.

For a vertex set Q C V(GYN), a vertex v ¢ @, and an integer £ > 2A, we say that a
vertex set S is a (v, Q,£)-isle if v € S, GYN[S] is connected, SNQ = @, and |[Ngu~n (S5)| < £.3
We will rely on the following greedy procedure, that is inspired by the enumeration algorithm
for important separators in parameterized complexity (cf. [12] and [18, Chapter 8]).

» Lemma 10. Given a set Q C V(GYN), a verter v ¢ Q, and an integer £ > 2A, one can
in O(£3n) time find an inclusion-wise mazimal (v, Q, £)-isle.

Proof. We perform the following iterative procedure. Start with S = {v}; clearly, S is a
(v, @, )-isle, as v ¢ Q by assumption and the maximum in-degree of G is A. In an iterative
step, we assume that S is a (v, @, £)-isle, and our goal is to check if S is an inclusion-wise
maximal one, or produce a (v, @, ¢)-isle S’ with S C S’.

To this end, consider every w € Ngun(S) \ @; note that, by the connectivity of S’ and
S, there exists such w € S’ \ S for every isle S’ we are looking for. Collapse in GUN the
set SU{w} into a single vertex s and add a super-source vertex ¢ adjacent to all vertices of
Q. Let G’ be the resultingg (undirected) graph. Find a minimum s — ¢ vertex cut Z in G,
or conclude that such a minimum cut is of size larger than ¢; this can be done using O(¥)
rounds of the Ford-Fulkerson algorithm, taking total time O(¢n). Moreover, within this
time we can find the minimum cut closest to t, that is, the unique one with inclusion-wise
maximal set of vertices remaining in the connected component with the vertex s (cf. [18]).

3 We use the following notation with respect to neighborhoods. Let G be an undirected graph, z € V(G),
and S C V(G). Then Ng(z) is the set of neighbors of z in G, Nglz] = {z} U Ng(z), N¢g[S] =
U,es Nalzl, Na(S) = Na[S]\ S, N&[S] = Na[Ng[S]], and N&(S) = Ne(Ng[9]).
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If such a cut is found, let S’ be the subset of vertices of G corresponding to the connected
component of G\ Z containing the vertex s. Clearly, Ngu~(S’) = Z, and S’ is a (v, Q, £)-isle
containing S and w. Otherwise, we conclude that no (v, @, £)-isle containing both S and w
exists, since for every such isle S, the set Ngun(S’) is an s — ¢ cut in G’ of size at most .

The computation for fixed S and w takes O(¢n) time. Since S is an (v, @, £)-isle, there
are at most £ vertices w to try. Due to the fact that we always take the s — ¢t cut closest to
t, the size of the set Ngun(.9) strictly grows at every iteration (possibly except the first one,
when S = {v}). Consequently, they are at most ¢ + 1 iterations of the procedure, and the
running time bound follows. |

We pick an arbitrary vertex v°"* on C; and an arbitrary vertex v on C,, and use

Lemma 10 for both these vertices, the set @ := X, and threshold ¢ := |r/(4A + 2)]; recall
that | X| = Q(A?%/a) by the assumptions of Theorem 3 thus we may assume ¢ > 2A. Let
5°u¢ and S be the two isles obtained. Since £ < r, and every cycle C; is connected with
r vertex-disjoint paths to X, no cycle C; is contained in either S°* or S™". Since an isle is
connected, we obtain the following.

» Lemma 11. The isle S°" does not contain any vertex that is enclosed by Cyy1, and the
isle S™ does not contain any vertex that is not strictly enclosed by Cr_y.

Proof. The proofs for S™ and S°U* are symmetrical, so we just focus here on the case of S°Ut.
Assume to the contrary that S°U contains a vertex enclosed by Cy. 1. Since v°% € S°U and
by the connectity of S, S°" contains a vertex from every cycle C;, 1 < i < £+ 1. Since
| Ngun (5°U%)| < ¢, for some 1 < i < £+ 1 we have that V(C;) is completely contained in
Sout. However, recall that there are r > ¢ vertex-disjoint paths in GUN connecting C; with
X. This contradicts the facts that S°"* N X = () and | Ngu~ (S°")| < 2. <

By Lemma 11, the isles S°" and S are somewhat local in the graph: they do not
go too deep into the set of cycles C1,Cs,...,C.. On the other hand, recall that they are
inclusion-wise mazimal isles; by the next lemma, this ensures that they are connected by a
large number of vertex-disjoint undirected paths to the set X. Let W' = N2 [S°"] and
W = NZux[S™].

» Lemma 12. In GUN, there are £ + 1 node-disjoint undirected paths connecting W and
X and £+ 1 node-disjoint undirected paths connecting Wi and X.

Proof. By symmetry, we can focus on the case of W°". The intuition is as follows: if there
does not exist a sufficient amount of desired node-disjoint paths, then the corresponding cut
would allow us to construct a strictly larger isle, a contradiction to the maximality of S°Ut.
In some sense, Ngun (S°") is the “last bottleneck” of size at most £ between v°%* and X,
and, after passing it, we should have more than ¢ paths between X and N, éUN [Sout] = Weut,

Formally, assume the contrary of the lemma statement; by Menger’s theorem, there exist
vertex sets A, B C V(GYN) such that AUB = V(GYN), [ANB| < ¢, WU C A, X C B,
and no edge of GVN has one endpoint in A\ B and the second endpoint in B\ A.

Recall that S°** N X = () by the definition of an isle, while NéUN [So] = wowt C
A. Hence we may assume that (Ngun[S°U]\ X) C (A \ B), as removing all vertices of
Ngux[S°"]\ X from B would not invalidate any of the properties of the pair (A, B). Recall
also that GUN[S°"] is connected; let Sa be the vertex set of the connected component
of GUN'\ (AN B) containing S°%. Clearly, S4 € A\ B, so S4 N X = . Furthermore,
Ngun (S4) CANB, so [Ngun(Sa)| < L. As Sout C Gy, by the maximality of Sout we infer
that S4 = S°U. Since Ngux|[S°]\ X C S4, we infer that Ngu~ (S°") C X. However, this
is a contradiction, as GUN is connected and S°** C V(GUN)\ X. <
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Finding directed concentric cycles. We now use the undirected cycles C1,Csy,...,C,
to find a large number of node-disjoint directed concentric cycles separating S™ and S°U*.
Recall that ¢ := |[r/(4A +2)].

» Lemma 13. One can in polynomial time find [£/2] node-disjoint directed concentric cycles,
all going in the same direction (all clockwise or all counter-clockwise), such that all vertices
of S™ are strictly enclosed by the innermost cycle, and all vertices of S°** are not enclosed
by the outermost cycle, or vice versa, with the roles of S™ and S°"* swapped.

Proof. Denote G' = G\ (Ngun[S°"] U Ngun[S™]). Let fou' and f™ be the faces of G’
that contain S°"* and S™, respectively; by Lemma 11, the cycle Crr /21 remains in G and
fout # fin. Furthermore, the vertices of NZ2ux(5°") lie on the face fo* of G’, and the
vertices of NéUN (S™) lie on the face f™. We apply Lemma 7 twice to the graph G’ and the
requirement of ¢ cycles, once for the pair of faces (f°Ut, i) and once for the pair (f, fout).
If at least one of the applications returns a family of cycles, then we are done, as every
cycle encloses either S or §°"*. Thus, we are left with the case when both the applications
return a curve; let us denote these curves v; and ~s, respectively.

Before we proceed to the formal calculations leading to a contradiction, let us give some
intuition. The curves ; and 7, are very skewed in terms of the directions of edges crossing
it: only edges in one direction are allowed, while in the second direction only ¢ vertices are
allowed, and every vertex is of maximum in-degree A. The locality of isles S°"* and S
(Lemma 11) implies that 1 and v cross most of the cycles C;; consequently, they need to
cross much more than A arcs in one direction. However, the graph G’ is very close to an
Eulerian one, as we have a bound of ¢ on the size of the boundary of S and S™. This
leads to a contradiction with Lemma 6 for a closed curve being essentially a concatenation
of 71 and ~,.

Formally, let us first modify the curve 77 to obtain a face-edge curve ~; as follows:
whenever y; crosses a vertex v, we move it slightly to avoid v, at the cost of intersecting
some of the arcs incident to v. Since the maximum in-degree and out-degree of G (and thus
G') is at most A, we have that crosst!?%#(y]) < A(¢ —1). Similarly, we obtain a curve 7}
with crossl#(v4) < A(¢—1). Since 7} starts in f°* and ends in f'", while 74 starts in fi
and ends in f°U we can concatenate these curves (without introducing any new intersection
with G’) and obtain a closed face-edge curve 4. This curve 4/ visits both fou* and fi*, and
satisfies

cross" 7 (y') < 2A(0 - 1). (1)

By Lemma 11, the undirected cycles Cyy2,Cois,...,Cr_¢—1 remain in G’, and both ~{ and
5 need to cross at least one edge of each of these cycles. Consequently,

cross“ 7R (y) + cross® L (y) > 2(r — 20— 2). (2)
By merging (1) and (2), and by the choice of ¢, we obtain that:
—imb(y) = cross® (7)) — crosst 7 E (7)) > 2(r — 20 — 2 — 2A(¢ — 1)) > 4AL. (3)

On the other hand, note that every vertex of G’ with a non-zero imbalance is a former
neighbor of a vertex of Ngux (S°*US™). As there are at most 2/ vertices in Ngux (S°*US™),
and every such vertex has in-degree and out-degree bounded by A, we have

> Jimbe (v)] < > indeg (1) + outdeg, (u) < 4AL. (4)
vEV(G') u€ENguN (Soutusin)

Equations (3) and (4) stand in contradiction with Lemma 6. <

11
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Finishing the crossbar construction. Let C1,. .., CIW21 be the concentric directed cycles
found by Lemma 13; by symmetry, assume they all enclose S™. Let q := [£/4]. We consider
two cases, depending on whether at least half of the vertices of X are enclosed by C'(’I or not.
The two cases correspond to the two symmetric outcomes of Theorem 3. In what follows,
we describe only the first case, when at least half of the vertices of X are enclosed by C¢,
and we use cycles C7,Cs, ..., O} and vertex-disjoint paths from X to Weut: the second case
is completely symmetric, but uses cycles Cy 1,Cy o, ..., O} and paths from X to win,

Consider the set of £ + 1 paths in GYN connecting W°"* and X, whose existence is
promised by Lemma 12, and let X°" be the set of the endpoints of the paths. The vertices
in X°" may not be enclosed by C,']. Our goal is to find a different set of vertices that are
enclosed by C’é such that they have disjoint paths to W°4; we use well-linkedness of X for
this purpose. As £+ 1 < |X|/2 and the set X is a node-well-linked, for every set X' C X
of ¢ 4 1 vertices enclosed by C’(’I, there exist a(f + 1) node-disjoint paths connecting X°u
and X’. By combining these paths with the paths connecting W°"* and X°" we obtain
a flow that sends «(¢ + 1)/2 amount of flow in GYN with unit node capacities from X’ to
Wout with 1/2 originating in every vertex in X’. Consequently, there exists a set ¥ C X
of size at least a(f + 1)/2, whose vertices are all enclosed by Cy, and such that there exist
|Y'| node-disjoint paths in GUN connecting Y and Weut.

By Lemma 5, there exist at least (af — 2)/(2(A + 1)) node-disjoint directed paths from
Y to WO (we let YT C Y denote the end points of these paths) and the same amount of
node-disjoint directed paths from W°" to Y (we let Y~ C Y denote the end points of these
paths). Recall that £ = O(a|X|/A), thus (af —2)/(2(A+1)) = O(a?|X|/A?). As no vertex
of W is strictly enclosed by C1, these paths, together with the cycles Cf, Cj, ..., C}, form
the desired structure. This concludes the proof of Theorem 3.

4  Concluding Remarks

Our main technical contribution in this paper is to show that a planar directed graph has
a constant congestion routing structure of size Q(h/polylog(h)), where h = dtw(G). This
structural result was motivated by the algorithmic problem of routing symmetric demands
in directed graphs. Recent results, in the undirected graph setting, have demonstrated
effectively the inherent synergy between approximation algorithms for routing problems
and structural results in graph theory related to treewidth. The work in [7] and here are
steps towards extending this synergy to directed graphs. The directed graph setting is
significantly more challenging, however, and progress in this direction could yield several
new benefits. We raise some open problems below.
Does a planar directed graph with treewidth h have a constant congestion crossbar of
size Q(h). This would strengthen our result. In particular, is there a cylindrical grid
minor of size Q(h)?
The techniques in this paper could likely be extended to directed graphs that can be
embedded on a bounded genus surface, and more generally to directed graphs whose
undirected support graph is from a proper minor-closed family. The ideas of well-linked
decomposition and degree-reduction do not rely on planarity. Moreover, there is a linear
relationship between treewidth and the size of a grid-minor in undirected graphs from a
proper minor-closed family [19].
Does a general directed graph with treewidth h have a constant congestion crossbar of
size Q(h/polylog(h))? Is there a cylindrical grid minor of size Q(h°) for some fixed § > 07
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