
Decomposable Submodular Function Minimization
Discrete and Continuous

Alina Ene∗ Huy L. Nguyễn† László A. Végh‡

Abstract

This paper investigates connections between discrete and continuous approaches for
decomposable submodular function minimization. We provide improved running
time estimates for the state-of-the-art continuous algorithms for the problem using
combinatorial arguments. We also provide a systematic experimental comparison
of the two types of methods, based on a clear distinction between level-0 and
level-1 algorithms.

1 Introduction

Submodular functions arise in a wide range of applications: graph theory, optimization, economics,
game theory, to name a few. A function f : 2V → R on a ground set V is submodular if f(X) +
f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) for all sets X,Y ⊆ V . Submodularity can also be interpreted as a
diminishing returns property.

There has been significant interest in submodular optimization in the machine learning and computer
vision communities. The submodular function minimization (SFM) problem arises in problems
in image segmentation or MAP inference tasks in Markov Random Fields. Landmark results in
combinatorial optimization give polynomial-time exact algorithms for SFM. However, the high-
degree polynomial dependence in the running time is prohibitive for large-scale problem instances.
The main objective in this context is to develop fast and scalable SFM algorithms.

Instead of minimizing arbitrary submodular functions, several recent papers aim to exploit special
structural properties of submodular functions arising in practical applications. This paper focuses on
the popular model of decomposable submodular functions. These are functions that can be written as
sums of several “simple” submodular functions defined on small supports.

Some definitions are needed to introduce our problem setting. Let f : 2V → R be a submodular
function, and let n := |V |. We can assume w.l.o.g. that f(∅) = 0. We are interested in solving the
submodular function minimization problem:

min
S⊆V

f(S). (SFM)

For a vector y ∈ RV and a set S ⊆ V , we use the notation y(S) :=
∑
v∈S y(v). The base polytope

of a submodular function is defined as

B(f) := {y ∈ RV : y(S) ≤ f(S) ∀S ⊆ V, y(V) = f(V)}.
One can optimize linear functions over B(f) using the greedy algorithm. The SFM problem can be
reduced to finding the minimum norm point of the base polytope B(f) [11].

min

{
1

2
‖y‖22 : y ∈ B(f)

}
. (Min-Norm)

∗Department of Computer Science, Boston University, aene@bu.edu
†College of Computer and Information Science, Northeastern University, hu.nguyen@northeastern.edu
‡Department of Mathematics, London School of Economics, L.Vegh@lse.ac.uk

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

This reduction is the starting point of convex optimization approaches for SFM. We refer the reader
to Sections 44–45 in [29] for concepts and results in submodular optimization, and to [3] on machine
learning applications.

We assume that f is given in the decomposition f(S) =
∑r
i=1 fi(S), where each fi : 2V → R is

a submodular function. Such functions are called decomposable or Sum-of-Submodular (SoS) in
the literature. In the decomposable submodular function minimization (DSFM) problem, we aim to
minimize a function given in such a decomposition. We will make the following assumptions.

For each i ∈ [r], we assume that two oracles are provided: (i) a value oracle that returns fi(S)
for any set S ⊆ V in time EOi; and (ii) a quadratic minimization oracle Oi(w). For any input
vector w ∈ Rn, this oracle returns an optimal solution to (Min-Norm) for the function fi + w, or
equivalently, an optimal solution to miny∈B(fi) ‖y + w‖22. We let Θi denote the running time of
a single call to the oracle Oi, Θmax := maxi∈[r] Θi denote the maximum time of an oracle call,
Θavg := 1

r

∑
i∈[r] Θi denote the average time of an oracle call.4 We let Fi,max := maxS⊆V |fi(S)|,

Fmax := maxS⊆V |f(S)| denote the maximum function values. For each i ∈ [r], the function fi has
an effective support Ci such that fi(S) = fi(S ∩ Ci) for every S ⊆ V .

DSFM thus requires algorithms on two levels. The level-0 algorithms are the subroutines used to
evaluate the oracles Oi for every i ∈ [r]. The level-1 algorithm minimizes the function f using the
level-0 algorithms as black boxes.

1.1 Prior work

SFM has had a long history in combinatorial optimization since the early 1970s, following the
influential work of Edmonds [5]. The first polynomial-time algorithm was obtained via the ellipsoid
method [15]; recent work presented substantial improvements using this approach [23]. Substantial
work focused on designing strongly polynomial combinatorial algorithms [10, 16, 17, 26, 18, 28].
Still, designing practical algorithms for SFM that can be applied to large-scale problem instances
remains an open problem.

Let us now turn to DSFM. Previous work mainly focused on level-1 algorithms. These can be classi-
fied as discrete and continuous optimization methods. The discrete approach builds on techniques of
classical discrete algorithms for network flows and for submodular flows. Kolmogorov [22] showed
that the problem can be reduced to submodular flow maximization, and also presented a more efficient
augmenting path algorithm. Subsequent discrete approaches were given in [2, 8, 9]. Continuous
approaches start with the convex programming formulation (Min-Norm). Gradient methods were
applied for the decomposable setting in [6, 25, 31].

Less attention has been given to the level-0 algorithms. Some papers mainly focus on theoretical
guarantees on the running time of level-1 algorithms, and treat the level-0 subroutines as black-boxes
(e.g. [6, 25, 22]). In other papers (e.g. [19, 31]), the model is restricted to functions fi of a simple
specific type that are easy to minimize. An alternative assumption is that all Ci’s are small, of size at
most k; and thus these oracles can be evaluated by exhaustive search, in 2k value oracle calls (e.g.
[2, 8]). Shanu et al. [30] use a block coordinate descent method for level-1, and make no assumptions
on the functions fi. The oracles are evaluated via the Fujishige-Wolfe minimum norm point algorithm
[12, 32] for level-0.

Let us note that these experimental studies considered the level-0 and level-1 algorithms as a single
“package”. For example, Shanu et al. [30] compare the performance of their SoS Min-Norm algorithm
to the continuous approach of Jegelka et al. [19] and the combinatorial approach of Arora et al. [2].
However, these implementations cannot be directly compared, since they use three different level-0
algorithms: Fujishige-Wolfe in SoS Min-Norm, a general QP solver for the algorithm of [19], and
exhaustive search for [2]. For potentials of large support, Fujishige-Wolfe outperforms these other
level-0 subroutines, hence the level-1 algorithms in [19, 2] could have compared more favorably
using the same Fujishige-Wolfe subroutine.

4For flow-type algorithms for DSFM, a slightly weaker oracle assumption suffices, returning a minimizer
of minS⊆Ci fi(S) + w(S) for any given w ∈ RCi . This oracle and the quadratic minimization oracle are
reducible to each other: the former reduces to a single call to the latter, and one can implement the latter using
O(|Ci|) calls to the former (see e.g. [3]).

2

1.2 Our contributions

Our paper establishes connections between discrete and continuous methods for DSFM, as well as
provides a systematic experimental comparison of these approaches. Our main theoretical contribution
improves the worst-case complexity bound of the most recent continuous optimization methods [6, 25]
by a factor of r, the number of functions in the decomposition. This is achieved by improving the
bounds on the relevant condition numbers. Our proof exploits ideas from the discrete optimization
approach. This provides not only better, but also considerably simpler arguments than the algebraic
proof in [25].

The guiding principle of our experimental work is the clean conceptual distinction between the
level-0 and level-1 algorithms, and to compare different level-1 algorithms by using the same level-0
subroutines. We compare the state-of-the-art continuous and discrete algorithms: RCDM and ACDM
from [6] with Submodular IBFS from [8]. We consider multiple options for the level-0 subroutines.
For certain potential types, we use tailored subroutines exploiting the specific form of the problem.
We also consider a variant of the Fujishige-Wolfe algorithm as a subroutine applicable for arbitrary
potentials.

Our experimental results reveal the following tradeoff. Discrete algorithms on level-1 require more
calls to the level-0 oracle, but less overhead computation. Hence using algorithms such as IBFS on
level-1 can be significantly faster than gradient descent, as long as the potentials have fairly small
supports. However, as the size of the potentials grow, or we do need to work with a generic level-0
algorithm, gradient methods are preferable. Gradient methods can perform better for larger potentials
also due to weaker requirements on the level-0 subroutines: approximate level-0 subroutines suffice
for them, whereas discrete algorithms require exact optimal solutions on level-0.

Paper outline. The rest of the paper is structured as follows. The level-1 algorithmic frameworks
using discrete and convex optimization are described in Sections 2 and 3, respectively. Section 4
gives improved convergence guarantees for the gradient descent algorithms outlined in Section 3.
Section 5 discusses the different types of level-0 algorithms and how they can be used together with
the level-1 frameworks. Section 6 presents a brief overview of our experimental results.

2 Discrete optimization algorithms on Level-1

In this section, we outline a level-1 algorithmic framework for DSFM that is based on a combinatorial
framework first studied by Fujishige and Zhang [13] for submodular intersection. The submodular
intersection problem is equivalent to DSFM for the sum of two functions, and the approach can be
adapted and extended to the general DSFM problem with an arbitrary decomposition. We now give a
brief description of the algorithmic framework. The Appendix exhibits submodular versions of the
Edmonds-Karp and preflow-push algorithms.

Algorithmic framework. For a decomposable function f , every x ∈ B(f) can be written as
x =

∑r
i=1 xi, where supp(xi) ⊆ Ci and xi ∈ B(fi) (see e.g. Theorem 44.6 in [29]). A natural

algorithmic approach is to maintain an x ∈ B(f) in such a representation, and iteratively update it
using the combinatorial framework described below. DSFM can be cast as a maximum network flow
problem in a network that is suitably defined based on the current point x. This can be viewed as an
analogue of the residual graph in the maxflow/mincut setting, and it is precisely the residual graph if
the DSFM instance is a minimum cut instance.

The auxiliary graph. For an x ∈ B(f) of the form x =
∑r
i=1 xi, we construct the following

directed auxiliary graph G = (V,E), with E =
⋃r
i=1Ei and capacities c : E → R+. E is a

multiset union: we include parallel copies if the same arc occurs in multiple Ei. The arc sets Ei
are complete directed graphs (cliques) on Ci, and for an arc (u, v) ∈ Ei, we define c(u, v) :=
min{fi(S) − xi(S) : S ⊆ Ci, u ∈ S, v /∈ S}. This is the maximum value ε such that x′i ∈ B(fi),
where x′i(u) = xi(u) + ε, x′i(v) = xi(v)− ε, x′i(z) = xi(z) for z /∈ {u, v}.
Let N := {v ∈ V : x(v) < 0} and P := {v ∈ V : x(v) > 0}. The algorithm aims to improve the
current x by updating along shortest directed paths from N to P with positive capacity; there are
several ways to update the solution, and we discuss specific approaches (derived from maximum
flow algorithms) in the Appendix. If there exists no such directed path, then we let S denote the set

3

reachable from N on directed paths with positive capacity; thus, S ∩ P = ∅. One can show that S is
a minimizer of the function f .

Updating along a shortest path Q from N to P amounts to the following. Let ε denote the minimum
capacity of an arc on Q. If (u, v) ∈ Q ∩ Ei, then we increase xi(u) by ε and decrease xi(v) by ε.
The crucial technical claim is the following. Let d(u) denote the shortest path distance of positive
capacity arcs from u to the set P . Then, an update along a shortest directed path from N to P results
in a feasible x ∈ B(f), and further, all distance labels d(u) are non-decreasing. We refer the reader
to Fujishige and Zhang [13] for a proof of this claim.

Level-1 algorithms based on the network flow approach. Using the auxiliary graph described
above, and updating on shortest augmenting paths, one can generalize several maximum flow
algorithms to a level-1 algorithm of DSFM. In particular, based on the preflow-push algorithm [14],
one can obtain a strongly polynomial DSFM algorithm with running time O(n2Θmax

∑r
i=1 |Ci|2). A

scaling variant provides a weakly polynomial running time O(n2Θmax logFmax + n
∑r
i=1 |Ci|3Θi).

We defer the details to the Appendix.

In our experiments, we use the submodular IBFS algorithm [8] as the main discrete level-1 algorithm;
the same running time estimate as for preflow-push is applicable. If all Ci’s are small, O(1), the
running time is O(n2rΘmax); note that r = Ω(n) in this case.

3 Convex optimization algorithms on Level-1

3.1 Convex formulations for DSFM

Recall the convex quadratic program (Min-Norm) from the Introduction. This program has a unique
optimal solution s∗, and the set S = {v ∈ V : s∗(v) < 0} is the unique smallest minimizer to the
SFM problem. We will refer to this optimal solution s∗ throughout the section.

In the DSFM setting, one can write (Min-Norm) in multiple equivalent forms [19]. For the first
formulation, we let P :=

∏r
i=1B(fi) ⊆ Rrn, and let A ∈ Rn×(rn) denote the following matrix:

A := [InIn . . . In]︸ ︷︷ ︸
r times

.

Note that, for every y ∈ P , Ay =
∑r
i=1 yi, where yi is the i-th block of y, and thus Ay ∈ B(f).

The problem (Min-Norm) can be reformulated for DSFM as follows.

min

{
1

2
‖Ay‖22 : y ∈ P

}
. (Prox-DSFM)

The second formulation is the following. Let us define the subspace A := {a ∈ Rnr : Aa = 0}, and
minimize its distance from P:

min
{
‖a− y‖22 : a ∈ A, y ∈ P

}
. (Best-Approx)

The set of optimal solutions for both formulations (Prox-DSFM) and (Best-Approx) is the set
E := {y ∈ P : Ay = s∗}, where s∗ is the optimum of (Min-Norm). We note that, even though the set
of solutions to (Best-Approx) are pairs of points (a, y) ∈ A× P , the optimal solutions are uniquely
determined by y ∈ P , since the corresponding a is the projection of y to A.

3.2 Level-1 algorithms based on gradient descent

The gradient descent algorithms of [25, 6] provide level-1 algorithms for DSFM. We provide a brief
overview of these algorithms and we refer the reader to the respective papers for more details.

The alternating projections algorithm. Nishihara et al. [25] minimize (Best-Approx) using
alternating projections. The algorithm starts with a point a0 ∈ A and it iteratively constructs
a sequence

{
(a(k), x(k))

}
k≥0 by projecting onto A and P: x(k) = argminx∈P‖a(k) − x‖2,

a(k+1) = argmina∈A‖a− x(k)‖2.

Random coordinate descent algorithms. Ene and Nguyen [6] minimize (Prox-DSFM) using
random coordinate descent. The RCDM algorithm adapts the random coordinate descent algorithm

4

of Nesterov [24] to (Prox-DSFM). In each iteration, the algorithm samples a block i ∈ [r] uniformly
at random and it updates xi via a standard gradient descent step for smooth functions. ACDM, the
accelerated version of the algorithm, presents a further enhancement using techniques from [7].

3.3 Rates of convergence and condition numbers

The algorithms mentioned above enjoy a linear convergence rate despite the fact that the objective
functions of (Best-Approx) and (Prox-DSFM) are not strongly convex. Instead, the works [25, 6]
show that there are certain parameters that one can associate with the objective functions such that
the convergence is at the rate (1−α)k, where α ∈ (0, 1) is a quantity that depends on the appropriate
parameter. Let us now define these parameters.

Let A′ be the affine subspace A′ := {a ∈ Rnr : Aa = s∗}. Note that the set E of optimal solutions
to (Prox-DSFM) and (Best-Approx) is E = P ∩ A′. For y ∈ Rnr and a closed set K ⊆ Rnr, we let
d(y,K) = min {‖y − z‖2 : z ∈ K} denote the distance between y and K. The relevant parameter
for the Alternating Projections algorithm is defined as follows.

Definition 3.1 ([25]). For every y ∈ (P ∪ A′) \ E , let

κ(y) :=
d(y, E)

max {d(y,P), d(y,A′)}
, and κ∗ := sup {κ(y) : y ∈ (P ∪ A′) \ E} .

The relevant parameter for the random coordinate descent algorithms is the following.

Definition 3.2 ([6]). For every y ∈ P , let y∗ := argminp{‖p− y‖2 : p ∈ E} be the optimal solution
to (Prox-DSFM) that is closest to y. We say that the objective function 1

2‖Ay‖
2
2 of (Prox-DSFM) is

restricted `-strongly convex if, for all y ∈ P , we have

‖A(y − y∗)‖22 ≥ `‖y − y∗‖22.

We define

`∗ := sup

{
` :

1

2
‖Ay‖22 is restricted `-strongly convex

}
.

The running time dependence of the algorithms on these parameters is given in the following theorems.

Theorem 3.3 ([25]). Let (a(0), x(0) = argminx∈P‖a(0)−x‖2) be the initial solution and let (a∗, x∗)
be an optimal solution to (Best-Approx). The alternating projection algorithm produces in

k = Θ

(
κ2∗ ln

(
‖x(0) − x∗‖2

ε

))
iterations a pair of points a(k) ∈ A and x(k) ∈ P that is ε-optimal, i.e.,

‖a(k) − x(k)‖22 ≤ ‖a∗ − x∗‖22 + ε.

Theorem 3.4 ([6]). Let x(0) ∈ P be the initial solution and let x∗ be an optimal solution to
(Prox-DSFM) that minimizes ‖x(0) − x∗‖2. The random coordinate descent algorithm produces in

k = Θ

(
r

`∗
ln

(
‖x(0) − x∗‖2

ε

))
iterations a solution x(k) that is ε-optimal in expectation, i.e., E

[
1
2‖Ax

(k)‖22
]
≤ 1

2‖Ax
∗‖22 + ε.

The accelerated coordinate descent algorithm produces in

k = Θ

(
r

√
1

`∗
ln

(
‖x(0) − x∗‖2

ε

))
iterations (specifically, Θ

(
ln
(
‖x(0)−x∗‖2

ε

))
epochs with Θ

(
r
√

1
`∗

)
iterations in each epoch) a

solution x(k) that is ε-optimal in expectation, i.e., E
[
1
2‖Ax

(k)‖22
]
≤ 1

2‖Ax
∗‖22 + ε.

5

3.4 Tight analysis for the condition numbers and running times

We provide a tight analysis for the condition numbers (the parameters κ∗ and `∗ defined above). This
leads to improved upper bounds on the running times of the gradient descent algorithms.
Theorem 3.5. Let κ∗ and `∗ be the parameters defined in Definition 3.1 and Definition 3.2. We have
κ∗ = Θ(n

√
r) and `∗ = Θ(1/n2).

Using our improved convergence guarantees, we obtain the following improved running time analyses.
Corollary 3.6. The total running time for obtaining an ε-approximate solution5 is as follows.

• Alternating projections (AP): O
(
n2r2Θavg ln

(
‖x(0)−x∗‖2

ε

))
.

• Random coordinate descent (RCDM): O
(
n2rΘavg ln

(
‖x(0)−x∗‖2

ε

))
.

• Accelerated random coordinate descent (ACDM): O
(
nrΘavg ln

(
‖x(0)−x∗‖2

ε

))
.

We can upper bound the diameter of the base polytope byO(
√
nFmax) [20], and thus ‖x(0)−x∗‖2 =

O(
√
nFmax). For integer-valued functions, a ε-approximate solution can be converted to an exact

optimum if ε = O(1/n) [3].

The upper bound on κ∗ and the lower bound on `∗ are shown in Theorem 4.2. The lower bound on κ∗
and upper bound on `∗ in Theorem 3.5 follow by constructions in previous work, as explained next.
Nishihara et al. showed that κ∗ ≤ nr, and they give a family of minimum cut instances for which
κ∗ = Ω(n

√
r). Namely, consider a graph with n vertices and m edges, and suppose for simplicity

that the edges have integer capacities at most C. The cut function of the graph can be decomposed
into functions corresponding to the individual edges, and thus r = m and Θavg = O(1). Already
on simple cycle graphs, they show that the running time of AP is Ω(n2m2 ln(nC)), which implies
κ∗ = Ω(n

√
r).

Using the same construction, it is easy to obtain the upper bound `∗ = O(1/n2).

4 Tight convergence bounds for the convex optimization algorithms

In this section, we show that the combinatorial approach introduced in Section 2 can be applied to
obtain better bounds on the parameters κ∗ and `∗ defined in Section 3. Besides giving a stronger
bound, our proof is considerably simpler than the algebraic one using Cheeger’s inequality in [25].
The key is the following lemma.
Lemma 4.1. Let y ∈ P and s∗ ∈ B(f). Then there exists a point x ∈ P such that Ax = s∗ and
‖x− y‖2 ≤

√
n
2 ‖Ay − s

∗‖1.

Before proving this lemma, we show how it can be used to derive the bounds.
Theorem 4.2. We have κ∗ ≤ n

√
r/2 + 1 and `∗ ≥ 4/n2.

Proof: We start with the bound on κ∗. In order to bound κ∗, we need to upper bound κ(y) for any
y ∈ (P ∪ A′) \ E . We distinguish between two cases: y ∈ P \ E and y ∈ A′ \ E .

Case I: y ∈ P \E . The denominator in the definition of κ(y) is equal to d(y,A′) = ‖Ay − s∗‖2/
√
r.

This follows since the closest point a = (a1, . . . , ar) to y in A′ can be obtained as ai = yi +
(s∗ − Ay)/r for each i ∈ [r]. Lemma 4.1 gives an x ∈ P such that Ax = s∗ and ‖x − y‖2 ≤√
n
2 ‖Ay − s

∗‖1 ≤ n
2 ‖Ay − s

∗‖2. Since Ax = s∗, we have x ∈ E and thus the numerator of κ(y) is
at most ‖x− y‖2. Thus κ(y) ≤ ‖x− y‖2/(‖Ay − s∗‖2/

√
r) ≤ n

√
r/2.

Case II: y ∈ A′ \ E . This means that Ay = s∗. The denominator of κ(y) is equal to d(y,P). For
each i ∈ [r], let qi ∈ B(fi) be the point that minimizes ‖yi − qi‖2. Let q = (q1, . . . , qr) ∈ P . Then

5The algorithms considered here solve the optimization problem (Prox-DSFM). An ε-approximate solution
to an optimization problem min{f(x) : x ∈ P} is a solution x ∈ P satisfying f(x) ≤ f(x∗) + ε, where
x∗ ∈ argminx∈P f(x) is an optimal solution.

6

d(y,P) = ‖y − q‖2. Lemma 4.1 with q in place of y gives a point x ∈ E such that ‖q − x‖2 ≤√
n
2 ‖Aq−s

∗‖1. We have ‖Aq−s∗‖1 = ‖Aq−Ay‖1 ≤
∑r
i=1 ‖qi−yi‖1 = ‖q−y‖1 ≤

√
nr‖q−y‖2.

Thus ‖q−x‖2 ≤ n
√
r

2 ‖q−y‖2. Since x ∈ E , we have d(y, E) ≤ ‖x−y‖2 ≤ ‖x−q‖2 +‖q−y‖2 ≤(
1 + n

√
r

2

)
‖q − y‖2 =

(
1 + n

√
r

2

)
d(y,P). Therefore κ(p) ≤ 1 + n

√
r

2 , as desired.

Let us now prove the bound on `∗. Let y ∈ P and let y∗ := argminp{‖p− y‖2 : y ∈ E}. We need to
verify that ‖A(y − y∗)‖22 ≥ 4

n2 ‖y − y∗‖22. Again, we apply Lemma 4.1 to obtain a point x ∈ P such
that Ax = s∗ and ‖x− y‖22 ≤ n

4 ‖Ax−Ay‖
2
1 ≤ n2

4 ‖Ax−Ay‖
2
2. Since Ax = s∗, the definition of

y∗ gives ‖y−y∗‖22 ≤ ‖x−y‖22. Using that Ax = Ay∗ = s∗, we have ‖Ax−Ay‖2 = ‖Ay−Ay∗‖2.
�

Proof of Lemma 4.1: We give an algorithm that transforms y to a vector x ∈ P as in the statement
through a sequence of path augmentations in the auxiliary graph defined in Section 2. We initialize
x = y and maintain x ∈ P (and thus Ax ∈ B(f)) throughout. We now define the set of source
and sink nodes as N := {v ∈ V : (Ax)(v) < s∗(v)} and P := {v ∈ V : (Ax)(v) > s∗(v)}.
Once N = P = ∅, we have Ax = s∗ and terminate. Note that since Ax, s∗ ∈ B(f), we have∑
v(Ax)(v) =

∑
v s
∗(v) = f(V), and therefore N = ∅ is equivalent to P = ∅. The blocks of x are

denoted as x = (x1, x2, . . . , xr), with xi ∈ B(fi).
Claim 4.3. If N 6= ∅, then there exists a directed path of positive capacity in the auxiliary graph
between the sets N and P .

Proof: We say that a set T is i-tight, if xi(T) = fi(T). It is a simple consequence of submodularity
that the intersection and union of two i-tight sets are also i-tight sets. For every i ∈ [r] and every
u ∈ V , we define Ti(u) as the unique minimal i-tight set containing u. It is easy to see that for an arc
(u, v) ∈ Ei, c(u, v) > 0 if and only if v ∈ Ti(u). We note that if u /∈ Ci, then x(u) = fi({u}) = 0
and thus Ti(u) = {u}.
Let S be the set of vertices reachable from N on a directed path of positive capacity in the auxiliary
graph. For a contradiction, assume S ∩ P = ∅. By the definition of S, we must have Ti(u) ⊆ S for
every u ∈ S and every i ∈ [r]. Since the union of i-tight sets is also i-tight, we see that S is i-tight
for every i ∈ [r], and consequently, x(S) = f(S). On the other hand, since N ⊆ S, S ∩ P = ∅,
and N 6= ∅, we have x(S) < s∗(S). Since s∗ ∈ B(f), we have f(S) = x(S) < s∗(S) ≤ f(S), a
contradiction. We conclude that S ∩ P 6= ∅. �

In every step of the algorithm, we take a shortest directed path Q of positive capacity from N to P ,
and update x along this path. That is, if (u, v) ∈ Q ∩ Ei, then we increase xi(u) by ε and decrease
xi(v) by ε, where ε is the minimum capacity of an arc on Q. Note that this is the same as running
the Edmonds-Karp-Dinitz algorithm in the submodular auxiliary graph. Using the analysis of [13],
one can show that this change maintains x ∈ P , and that the algorithm terminates in finite (in fact,
strongly polynomial) time. We defer the details to the Appendix.

It remains to bound ‖x − y‖2. At every path update, the change in `∞-norm of x is at most ε,
and the change in `1-norm is at most nε, since the length of the path is ≤ n. At the same time,∑
v∈N (s∗(v) − (Ax)(v)) decreases by ε. Thus, ‖x − y‖∞ ≤ ‖Ay − s∗‖1/2 and ‖x − y‖1 ≤

n‖Ay − s∗‖1/2. Using the inequality ‖p‖2 ≤
√
‖p‖1‖p‖∞, we obtain ‖x− y‖2 ≤

√
n
2 ‖Ay − s

∗‖1,
completing the proof. �

5 The level-0 algorithms

In this section, we briefly discuss the level-0 algorithms and the interface between the level-1 and
level-0 algorithms.

Two-level frameworks via quadratic minimization oracles. Recall from the Introduction the
assumption on the subroutines Oi(w) that finds the minimum norm point in B(fi + w) for the input
vector w ∈ Rn for each i ∈ [r]. The continuous methods in Section 3 directly use the subroutines
Oi(w) for the alternating projection or coordinate descent steps. For the flow-based algorithms in
Section 2, the main oracle query is to find the auxiliary graph capacity c(u, v) of an arc (u, v) ∈ Ei
for some i ∈ [r]. This can be easily formulated as minimizing the function fi+w for an appropriatew
with supp(w) ⊆ Ci. As explained at the beginning of Section 3, an optimal solution to (Min-Norm)

7

immediately gives an optimal solution to the SFM problem for the same submodular function. Hence,
the auxiliary graph capacity queries can be implemented via single calls to the subroutines Oi(w).
Let us also remark that, while the functions fi are formally defined on the entire ground set V , their
effective support is Ci, and thus it suffices to solve the quadratic minimization problems on the
ground set Ci.

Whereas discrete and continuous algorithms require the same type of oracles, there is an important
difference between the two algorithms in terms of exactness for the oracle solutions. The discrete
algorithms require exact values of the auxiliary graph capacities c(u, v), as they must maintain
xi ∈ B(fi) throughout. Thus, the oracle must always return an optimal solution. The continuous
algorithms are more robust, and return a solution with the required accuracy even if the oracle only
returns an approximate solution. As discussed in Section 6, this difference leads to the continuous
methods being applicable in settings where the combinatorial algorithms are prohibitively slow.

Level-0 algorithms. We now discuss specific algorithms for quadratic minimization over the base
polytopes of the functions fi. Several functions that arise in applications are “simple”, meaning that
there is a function-specific quadratic minimization subroutine that is very efficient. If a function-
specific subroutine is not available, one can use a general-purpose submodular minimization algorithm.
The works [2, 8] use a brute force search as the subroutine for each each fi, whose running time is
2|Ci|EOi. However, this is applicable only for smallCi’s and is not suitable for our experiments where
the maximum clique size is quite large. As a general-purpose algorithm, we used the Fujishige-Wolfe
minimum norm point algorithm [12, 32]. This provides an ε-approximate solution inO(|Ci|F 2

i,max/ε)

iterations, with overall running time bound O((|Ci|4 + |Ci|2EOi)F
2
i,max/ε) [4]. The experimental

running time of the Fujishige-Wolfe algorithm can be prohibitively large [21]. As we discuss in
Section 6, by warm-starting the algorithm and performing only a small number of iterations, we were
able to use the algorithm in conjunction with the gradient descent level-1 algorithms.

6 Experimental results

We evaluate the algorithms on energy minimization problems that arise in image segmentation
problems. We follow the standard approach and model the image segmentation task of segmenting an
object from the background as finding a minimum cost 0/1 labeling of the pixels. The total labeling
cost is the sum of labeling costs corresponding to cliques, where a clique is a set of pixels. We refer
to the labeling cost functions as clique potentials.

The main focus of our experimental analysis is to compare the running times of the decomposable
submodular minimization algorithms. Therefore we have chosen to use the simple hand-tuned
potentials that were used in previous work: the edge-based costs [2] and the count-based costs
defined by [30, 31]. Specifically, we used the following clique potentials in our experiments, all of
which are submodular:

• Unary potentials for each pixel. The unary potentials are derived from Gaussian Mixture
Models of color features [27].

• Pairwise potentials for each edge of the 8-neighbor grid graph. For each graph edge (i, j)
between pixels i and j, the cost of a labeling equals 0 if the two pixels have the same label,
and exp(−‖vi − vj‖2) for different labels, where vi is the RGB color vector of pixel i.

• Square potentials for each 2× 2 square of pixels. The cost of a labeling is the square root
of the number of neighboring pixels that have different labels, as in [2].

• Region potentials. We use the algorithm from [31] to identify regions. For each region Ci,
the labeling cost is fi(S) = |S||Ci \ S|, where S and Ci \ S are the subsets of Ci labeled 0
and 1, respectively, see [30, 31].

We used five image segmentation instances to evaluate the algorithms.6 The experiments were carried
out on a single computer with a 3.3 GHz Intel Core i5 processor and 8 GB of memory; we reported
averaged times over 10 trials.

We performed several experiments with various combinations of potentials and parameters. In the
minimum cut experiments, we evaluated the algorithms on instances containing only unary and

6The data is available at http://melodi.ee.washington.edu/~jegelka/cc/index.html and
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/
segmentation/grabcut.htm

8

http://melodi.ee.washington.edu/~jegelka/cc/index.html
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

plant (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

octopus (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

R
u
n
n
in

g
 T

im
e

penguin (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

700

800

900

R
u
n
n
in

g
 T

im
e

plant (large cliques with Fujishige-Wolfe)

RCDM
ACDM

Figure 1: Running times in seconds on a subset of the instances. The results for the other instances
are very similar and are deferred to the Appendix. The x-axis shows the number of iterations for the
continuous algorithms. The IBFS algorithm is exact, and we display its running time as a flat line. In
the first three plots, the running time of IBFS on the small cliques instances nearly coincides with its
running time on minimum cut instances. In the last plot, the running time of IBFS is missing since it
is computationally prohibitive to run it on those instances.

pairwise potentials; in the small cliques experiments, we used unary, pairwise, and square potentials.
Finally, the large cliques experiments used all potentials above. Here, we used two different level-0
algorithms for the region potentials. Firstly, we used an algorithm specific to the particular potential,
with running time O(|Ci| log(|Ci|) + |Ci|EOi). Secondly, we used the general Fujishige-Wolfe
algorithm for level-0. This turned out to be significantly slower: it was prohibitive to run the algorithm
to near-convergence. Hence, we could not implement IBFS in this setting as it requires an exact
solution.

We were able to implement coordinate descent methods with the following modification of Fujishige-
Wolfe at level-0. At every iteration, we ran Fujishige-Wolfe for 10 iterations only, but we warm-started
with the current solution xi ∈ B(fi) for each i ∈ [r]. Interestingly, this turned out to be sufficient for
the level-1 algorithm to make progress.

Summary of results. Figure 1 shows the running times for some of the instances; we defer the full
experimental results to the Appendix. The IBFS algorithm is significantly faster than the gradient
descent algorithms on all of the instances with small cliques. For all of the instances with larger
cliques, IBFS (as well as other combinatorial algorithms) are no longer suitable if the only choice for
the level-0 algorithms are generic methods such as the Fujishige-Wolfe algorithm. The experimental
results suggest that in such cases, the coordinate descent methods together with a suitably modified
Fujishige-Wolfe algorithm provides an approach for obtaining an approximate solution.

9

References
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, Inc., feb 1993.

[2] C. Arora, S. Banerjee, P. Kalra, and S. Maheshwari. Generic cuts: An efficient algorithm for
optimal inference in higher order MRF-MAP. In European Conference on Computer Vision,
pages 17–30. Springer, 2012.

[3] F. Bach. Learning with submodular functions: A convex optimization perspective. Foundations
and Trends in Machine Learning, 6(2-3):145–373, 2013.

[4] D. Chakrabarty, P. Jain, and P. Kothari. Provable submodular minimization using Wolfe’s
algorithm. In Advances in Neural Information Processing Systems, pages 802–809, 2014.

[5] J. Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial structures
and their applications, pages 69–87, 1970.

[6] A. R. Ene and H. L. Nguyen. Random coordinate descent methods for minimizing decomposable
submodular functions. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015.

[7] O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM
Journal on Optimization, 25(4):1997–2023, 2015.

[8] A. Fix, T. Joachims, S. Min Park, and R. Zabih. Structured learning of sum-of-submodular higher
order energy functions. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3104–3111, 2013.

[9] A. Fix, C. Wang, and R. Zabih. A primal-dual algorithm for higher-order multilabel Markov
random fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1138–1145, 2014.

[10] L. Fleischer and S. Iwata. A push-relabel framework for submodular function minimization and
applications to parametric optimization. Discrete Applied Mathematics, 131(2):311–322, 2003.

[11] S. Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight vector.
Mathematics of Operations Research, 5(2):186–196, 1980.

[12] S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the
minimum-norm base. Pacific Journal of Optimization, 7(1):3–17, 2011.

[13] S. Fujishige and X. Zhang. New algorithms for the intersection problem of submodular systems.
Japan Journal of Industrial and Applied Mathematics, 9(3):369, 1992.

[14] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of
the ACM (JACM), 35(4):921–940, 1988.

[15] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[16] S. Iwata. A faster scaling algorithm for minimizing submodular functions. SIAM Journal on
Computing, 32(4):833–840, 2003.

[17] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for
minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–777, 2001.

[18] S. Iwata and J. B. Orlin. A simple combinatorial algorithm for submodular function minimiza-
tion. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009.

[19] S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization.
In Advances in Neural Information Processing Systems (NIPS), 2013.

[20] S. Jegelka and J. A. Bilmes. Online submodular minimization for combinatorial structures.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
345–352, 2011.

10

[21] S. Jegelka, H. Lin, and J. A. Bilmes. On fast approximate submodular minimization. In
Advances in Neural Information Processing Systems, pages 460–468, 2011.

[22] V. Kolmogorov. Minimizing a sum of submodular functions. Discrete Applied Mathematics,
160(15):2246–2258, 2012.

[23] Y. T. Lee, A. Sidford, and S. C.-w. Wong. A faster cutting plane method and its implications for
combinatorial and convex optimization. In IEEE Foundations of Computer Science (FOCS),
2015.

[24] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[25] R. Nishihara, S. Jegelka, and M. I. Jordan. On the convergence rate of decomposable submodular
function minimization. In Advances in Neural Information Processing Systems (NIPS), pages
640–648, 2014.

[26] J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization.
Mathematical Programming, 118(2):237–251, 2009.

[27] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using
iterated graph cuts. ACM Transactions on Graphics (TOG), 23(3):309–314, 2004.

[28] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polyno-
mial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

[29] A. Schrijver. Combinatorial optimization - Polyhedra and Efficiency. Springer, 2003.

[30] I. Shanu, C. Arora, and P. Singla. Min norm point algorithm for higher order MRF-MAP
inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5365–5374, 2016.

[31] P. Stobbe and A. Krause. Efficient minimization of decomposable submodular functions. In
Advances in Neural Information Processing Systems (NIPS), 2010.

[32] P. Wolfe. Finding the nearest point in a polytope. Mathematical Programming, 11(1):128–149,
1976.

11

A Level-1 algorithms based on the network flow approach

In this section, we extend the Fujishige-Zhang approach to the general DSFM problem with an
arbitrary number of functions in the decomposition. We illustrate the power of the resulting framework
by showing that it can be used to extend the classical maximum flow algorithms for graphs to the
DSFM setting: the preflow-push algorithm [14] and its scaling variant. Other maximum flow
algorithms can also be adapted using similar analyses.

A.1 Preflow-push algorithm

We proceed as in the preflow-push algorithm for the classical maximum flow problem in graphs.
We refer the reader to [1] on network flow algorithms, in particular, to Section 7.6 on the generic
preflow-push algorithm.

We maintain a point x ∈ B(f) with a decomposition x =
∑r
i=1 xi into points xi ∈ B(fi).

Throughout, we maintain supp(xi) ⊆ Vi for all i ∈ [r]. Initially, each xi is an arbitrary vertex in
B(fi), which we can find by running the greedy algorithm for an arbitrary permutation for fi. Let

N := {v ∈ V : x(v) < 0}, P := {v ∈ V : x(v) > 0}.

The auxiliary graph. For each i ∈ [r] and each u ∈ V , we define a set Ti(u) as follows. We say
that a set S ⊆ V is (xi, fi)-tight if xi(S) = fi(S). We let Ti(u) be the minimal (xi, fi)-tight set that
contains u, i.e., the minimal set S such that u ∈ S and xi(S) = fi(S). Since fi is submodular, there
is a unique minimal (xi, fi)-tight set Ti(u) containing u (see Lemma A.2). We note that if u /∈ Vi,
then xi(u) = fi(u) = 0 and Ti(u) = {u} hold throughout.

We use the sets {Ti(u) : i ∈ [r], u ∈ V } to define a directed graph G = (V,E), with E =
⋃r
i=1Ei

and capacities c : E → R+. Let

Ei := {(u, v) : u ∈ V, v ∈ Ti(u)} ∀i ∈ [r].

We think of the arcs of Ei as having color i, and we sometimes refer to an arc in Ei as an i-arc. If an
arc appears in more than one set Ei, we include multiple copies of the arc with the appropriate colors
and capacities.

We define the capacity c(u, v) = ci(u, v) for an i-arc as the maximum amount ε such that xεi ∈ B(fi),
where xεi := xi(u) + ε, xεi (v) = xi(v) − ε, and xεi (w) = xi(w) for all w 6= u, v. This can be
equivalently written as

ci(u, v) = min{fi(S)− xi(S) : S ⊆ V, u ∈ S, v /∈ S}. (1)

Using the minimality of Ti(u), one can show that ci(u, v) > 0 for every (u, v) ∈ E (see
Lemma A.10).

The resulting graph G can be thought of as an analogue of the residual graph from the max flow -
min cut setting, since it is the residual graph for minimum cut instances. The nodes of N are the
“sources”, and the nodes of P are the “sinks”.

In Section A.2.3, we show how the auxiliary graph can be constructed efficiently using the oraclesOi.
The auxiliary graph keeps changing during the modifications to the xi’s; the main technical challenge
is to keep track of all these changes. However, we do not need to maintain all arcs and capacities
at every point of the algorithm. The subroutine TIGHT-UPDATE(u, i) recomputes the set Ti(u) for
the current xi, and thus identifies all arcs of color i going out from u. The subroutine CAPACITY-
UPDATE(u, v, i) computes the current capacity of the arc (u, v) of color i. These subroutines are
described in Section A.2.3.

Throughout the algorithm, we maintain distance labels d : V → Z+ with the standard properties of
preflow-push algorithms:

d(v) = 0 ∀v ∈ P,
d(u) ≤ d(v) + 1 ∀(u, v) ∈ E. (?)

The labels are initialized as d(v) = 0 for all v ∈ V . Further, we consider an arbitrary but fixed
complete ordering ≺ of the ground set V , used for tie-breaking. An arc (u, v) is called admissible, if
d(u) = d(v) + 1.

12

Algorithm 1 Decomposable Submodular Function Minimization

Input: A submodular function f =
∑r
i=1 fi on ground set V , with value oracles and oracles Oi(w)

provided.
Output: A set S ⊆ V minimizing f(S).

1: for i = 1, . . . , r do xi ← arbitrary vertex of B(fi).
2: x←

∑r
i=1 xi.

3: for v ∈ V do d(v)← 0.

4: N ← {v ∈ V : x(v) < 0}; H ← ∅.
5: for i = 1, . . . , r do
6: for u ∈ Vi do TIGHT-UPDATE(u, i).
7: while N \H 6= ∅ do pick u ∈ N \H .
8: if there is an arc (u, v) ∈ E, d(u) = d(v) + 1 then
9: Select (u, v) with v minimal for ≺, and i s.t. (u, v) ∈ Ei.

10: ci(u, v)← CAPACITY-UPDATE(u, v, i).
11: ε← min{ci(u, v),−x(u)}.
12: xi(u)← xi(u) + ε.
13: xi(v)← xi(v)− ε.
14: if ε = ci(u, v) then
15: for (z, v) ∈ Ei do TIGHT-UPDATE(z, i).
16: if ε < ci(u, v) then
17: for z : (z, v) ∈ Ei, (z, u) /∈ Ei do Ti(z)← Ti(z) ∪ Ti(u).
18: Update the status of u and v in N .
19: else t← min{d(v) + 1: (u, v) ∈ E} ;
20: if t ≤ n then d(u)← t;
21: else d(u)← n; H ← H ∪ {u}.
22: S ← {u ∈ V : ∃ path in G from N to u}.
23: return S.

The overall algorithm is shown in Algorithm 1. At every iteration, a node u ∈ N is selected, and one
of the usual operations of preflow-push algorithms is performed.

• Relabel. If d(u) < n with no admissible arc leaving u, then we update

d(u) := min {min{d(v) + 1: (u, v) ∈ E}, n} .
We add the node u into the set H , if d(u) = n and there are no admissible arcs leaving u.
Nodes in H will not be considered again.

• Push. If there are outgoing admissible arcs (u, v) ∈ E, then we pick v minimal with respect
to the ordering ≺. Assume (u, v) ∈ Ei. In this case, we update xi as follows; we leave all
other xj’s unchanged. Let ε := min{−x(u), ci(u, v)}, and update

x′i(u) := xi(u) + ε,

x′i(v) := xi(v)− ε,
x′i(w) := xi(w) if w 6= u, v.

As shown in Lemma A.5 below, the distance labels remain valid after the push operation
and thus (?) is maintained for the updated graph and vectors xi.

Termination. The algorithm terminates when no push or relabel operation is possible. At that point,
we compute the set of nodes S reachable from N in the auxiliary graph G, and return S as an optimal
solution to (SFM). (Note that if N = ∅, then S = ∅.)
We show the following running time bound.
Theorem A.1. Algorithm 1 can be implemented to find the minimizer of f(S) in running time
O(n2Θmax

∑r
i=1 |Ci|2).

For the complexity bound, the main issue is how to efficiently maintain the graph G = (V,E), and
find the minimum label of the neighbors for the label update step. Algorithm 1 provides a simple and

13

T ′
i (z)

T ′
i (z)

T ′
i (z)

Ti(z)

Ti(z)

Ti(z)

u

v

v

u v u

(b) (c) (d)

Figure 2: Lemma A.3 cases.

natural way of updating the sets Ti(u). To achieve a better complexity, in the proof we will describe
a slightly more complicated, but more efficient variant.

A.2 Analysis

The correctness and running time analysis is performed in the following steps. In Section A.2.1,
we describe the changes in the auxiliary graph caused by push operations, and prove that the
main invariant (?) is maintained. In Section A.2.2, we show that if the algorithm terminates, it
correctly returns an optimal solution. Section A.2.3 describes the implementation of the subroutines
TIGHT-UPDATE and CAPACITY-UPDATE via the oracles Oi. The running time bound is given in
Section A.2.4. At a high level, it follows the lines of the standard preflow-push analysis, bounding
first the number of saturating, then the number of nonsaturating pushes (to be defined in due course).
However, due to the complex changes in the auxiliary graph, we need a more careful analysis.
The most difficult and technical part of the analysis is bounding the number of saturating pushes
(Lemma A.12), which is a significant departure from the analysis of the preflow-push algorithm for
graphs.

Let us start by a simple claim on tight sets. The proof is the standard application of submodularity.

Lemma A.2. If X,Y ⊆ V are (xi, fi)-tight sets, then X ∩ Y and X ∪ Y are also (xi, fi)-tight. In
particular, for every u ∈ Vi, there exists a unique minimal tight set Ti(u), and Ti(u) ⊆ Vi. If u /∈ Vi,
then Ti(u) = {u}. If v ∈ Ti(u), then Ti(v) ⊆ Ti(u).

A.2.1 Evolution of the auxiliary graph

Our first important goal is to show that the labels d(u) remain feasible throughout, i.e, (?) is
maintained. Towards this goal, we first need to understand how the minimal tight sets Ti(z) evolve.
Clearly, relabel steps have no effect on these sets. Also, a push on an edge (u, v) ∈ Ei does not affect
any of the sets Tj(z) for j 6= i. However, Ti(z) may change for some nodes z ∈ Vi, in accordance
with the next lemma.

Lemma A.3. Consider an iteration of the algorithm that updates the solution x to x′ by pushing
ε > 0 along the arc (u, v) ∈ Ei. Let {Ti(z) : z ∈ Vi} and {T ′i (z) : z ∈ Vi} be the minimal (xi, fi)-
tight sets and minimal (x′i, fi)-tight sets, respectively. For any z ∈ Vi, exactly one of the following
holds:

(a) Ti(z) = T ′i (z);

(b) Ti(z) ⊆ T ′i (z) and u ∈ T ′i (z) \ Ti(z) and v ∈ Ti(z);

(c) T ′i (z) ⊆ Ti(z) and u ∈ T ′i (z) and v ∈ Ti(z) \ T ′i (z);

(d) u ∈ T ′i (z) \ Ti(z) and v ∈ Ti(z) \ T ′i (z).

In cases (b), (c), and (d), we also have T ′i (z) ⊆ Ti(z) ∪ Ti(u). Case (a) happens only if either
{u, v} ⊆ T ′i (z) or {u, v} ∩ T ′i (z) = ∅.

14

The different cases are illustrated in Figure 2. The proof is given in the Appendix; it is a simple
case distinction based on whether u and v are contained in T ′i (z). Let us now derive some useful
implications from this lemma. We say that the push along the i-arc (u, v) is saturating if the pushed
flow amount is ε = ci(u, v), and it is non-saturating otherwise. Let T ′i (z) denote the sets after
pushing on the i-arc (u, v). By the definition of ci(u, v) (1), we see that T ′i (u) = Ti(u) if and only if
the push is non-saturating.
Lemma A.4. Let Ti(z) and T ′i (z) denote the respective tight sets before and after performing a push
on an arc (u, v) ∈ Ei.

(i) If z′ ∈ T ′i (z) \ Ti(z), then u /∈ Ti(z), v ∈ Ti(z), and z′ ∈ Ti(u).

(ii) If the push on (u, v) is non-saturating, and v ∈ Ti(z), u /∈ Ti(z), then T ′i (z) = Ti(z) ∪ Ti(u).
For all other nodes z, T ′i (z) = Ti(z).

Proof: (i) Possible cases in such a situation are (b) or (d). In both cases, u /∈ Ti(z), v ∈ Ti(z).
Further, the lemma asserts T ′i (z) ⊆ Ti(z) ∪ Ti(u) in both cases. Since z′ ∈ T ′i (z), and we assume
z′ /∈ Ti(z), it follows that z′ ∈ Ti(u).

(ii) Assume T ′i (z) 6= Ti(z). Then we must be in one of cases (b)–(d). We show that (b) is the
only possibility for non-saturating pushes. This follows by showing that in in cases (c) and (d),
T ′i (u) 6= Ti(u) holds. Note that u ∈ T ′i (z) and hence T ′i (u) ⊆ T ′i (z) in both cases, and hence
v /∈ T ′i (u), although v ∈ Ti(u). We thus conclude that (b) is the only possible case, giving v ∈ Ti(z)
and u /∈ Ti(z). Further, Ti(z) (T ′i (z), and u ∈ T ′i (z).

Let S = Ti(z) ∪ Ti(u). As the union of two (xi, fi)-tight sets, S is (xi, fi)-tight before the push;
and it remains tight after the push as it contains both u and v. Hence T ′i (z) ⊆ S. On the other hand,
since T ′i (u) = Ti(u) and u ∈ T ′i (z), we have Ti(u) ⊆ T ′i (z). Together with Ti(z) ⊆ T ′i (z), this
guarantees S ⊆ Ti(u). The claim follows. �

Using the lemma above, we can show that the distance labels remain valid.
Lemma A.5. The property (?) is maintained throughout the algorithm.

Proof: We have (?) trivially at initialization. d(u) = 0 for u ∈ P is maintained since we only
increase d(u) for nodes in N . Moreover, when we push flow on an arc (u, v), then x(u) may
decrease; however, the choice of ε guarantees that x′(u) ≥ 0 after the push. Therefore, once a node
leaves P , it cannot enter again.

Let us now show that d(z) ≤ d(w) + 1 for all (z, w) ∈ E. This is clearly maintained in all push steps.
Let us consider a relabel step, when we push flow on an arc (u, v) ∈ Ei. Let E′ and E′i denote the
new arc sets. The condition clearly holds for all (z, w) ∈ E′∩E. Consider a new arc (z, w) ∈ E′\E;
clearly, (z, w) ∈ E′i, since the other arc sets Ej remain unchanged. By Lemma A.4(i), we have
(z, v), (u,w) ∈ Ei. Then

d(z) ≤ d(v) + 1 (z, v) ∈ E
= d(u) (u, v) is admissible
≤ d(w) + 1 (u,w) ∈ E,

and the lemma follows. �

A.2.2 Termination

We now prove that the algorithm terminates correctly.
Lemma A.6. The set S returned by the algorithm minimizes f(S).

Proof: If N = ∅, we have f(S) ≥ x(S) ≥ 0 for all S ⊆ V , and x(∅) = f(∅) = 0. Thus
f(∅) = minS⊆V f(S). For the rest of the proof, we assume N 6= ∅.
Claim A.7. We have S ∩ P = ∅.
Proof: At termination, N ⊆ H and therefore d(u) = n for all u ∈ N . Thus it suffices to show that
there is no path from a node u with d(u) = n to a node v ∈ P . This easily follows by (?): if there is
a path from u to v in the auxiliary graph then d(u) ≤ d(v) + n− 1. Therefore nodes in P are not
reachable from any node u with d(u) = n. �

Claim A.8. S is (xi, fi)-tight for all i ∈ [r], and thus x(S) = f(S).

15

Proof: Since no arc leaves S, it follows that Ti(v) ⊆ S for all v ∈ S and all i ∈ [r]. Therefore,
S =

⋃
v∈S Ti(v) for all i ∈ [r], and Lemma A.2 implies that S is (xi, fi)-tight. Then xi(S) = fi(S)

for all i ∈ [r] gives x(S) = f(S). �

Now we can show that S is optimal as follows. For every set R ⊆ V , since S ∩ P = ∅, and N ⊆ S,
we have x(R) ≥ x(S). Consequently, f(R) ≥ x(R) ≥ x(S) = f(S). �

A.2.3 Subroutines for auxiliary graph updates

We now describe the subroutines TIGHT-UPDATE and CAPACITY-UPDATE, implemented using the
oracles Oi.
Observe that if the functions fi are integer valued, then we can maintain integrality of all xi throughout.
This is because all bases in B(fi) are integer, hence the xi’s can be initialized as integers. They are
updated in the flow steps; however, ε is always selected as integer, provided the previous vectors were
integers.

The subroutine TIGHT-UPDATE(u, i) has to compute the minimum (fi, xi)-tight set Ti(u) containing
u. The subroutine amounts to a single call to oracle Oi, with the weight function defined in the proof
of the following lemma.

Lemma A.9. The set Ti(u) can be found by a single call to oracle Oi.
Proof: Let us define the vector w ∈ ZV as w(u) := fi({u}) + 1, and w(v) = xi(v) − 1/(n + 1)
for all v ∈ Vi \ {u}. We show that Ti(u) is the unique minimizer of fi − w.

We start by showing that u ∈ S for any minimizer S of fi(S)− w(S). For a contradiction, suppose
that u /∈ S. We have

fi(S ∪ {u})− w(S ∪ {u}) = fi(S ∪ {u})− w(u)− w(S)

= fi(S)− w(S) + fi(S ∪ {u})− fi(S)− f({u})− 1.

By submodularity, fi(S ∪ {u}) ≤ fi(S) + fi({u}). Therefore, fi(S ∪ {u}) − w(S ∪ {u}) ≤
fi(S) − w(S) − 1, which is a contradiction. We thus have u ∈ S. Consider now an arbitrary set
S ⊆ V , u ∈ S.

fi(S)−w(S) = fi(S)−xi(S)+xi(u)−fi({u})−1+|S|/(n+1) ≥ xi(u)−fi({u})−1+|S|/(n+1).

Note that |S|/(n + 1) < 1 always holds. Clearly, fi(S) − w(S) < xi(u) − fi({u}) can only be
attained if S is (xi, fi)-tight, hence all minimizers must be (xi, fi)-tight. If S is an (xi, fi)-tight
set, we have fi(S) − w(S) = xi(u) − fi({u}) − 1 + |S|/(n + 1). Hence there will be a unique
minimizer, namely the one of the smallest cardinality, which is Ti(u). �

Let us now turn to CAPACITY-UPDATE(u, v, i). That is, we want to compute the capacity of
(u, v) ∈ Ei, which also means v ∈ Ti(u). This can be also implemented by a single call to Oi, as
described in the proof of the next lemma.

Lemma A.10. The capacity ci(u, v) = min{fi(S)− xi(S) : S ⊆ V, u ∈ S, v /∈ S} is positive, and
can be computed by a single call to oracle Oi.
Proof: First, note that the minimum must be positive. Otherwise, there would be an (xi, fi)-tight set
S with u ∈ S, v ∈ S, and thus Ti(u) 6⊆ S. This contradicts the fact that Ti(u) is the unique minimal
(xi, fi)-tight set containing u.

Let us modify the construction of the previous proof by defining w(u) = fi({u}) + 1, w(v) =
fi(V) − fi(V \ {v}) − 1, and w(z) = x(z) for all z /∈ {u, v}. Note that the term 1/(n + 1) is
omitted.

The same argument as in the previous proof shows that every minimizer S to f(S) − w(S) must
contain u, and an analogous argument shows that v /∈ S. We further see that the minimizer must be
(xi, fi)-tight. �

Remark. The argument in Lemma A.9 used that the functions fi are integer valued; this was
exploited in using the perturbation term 1/(n+ 1) in w. If we only assume that the fi’s are rational,
this should be modified to 1/(Q(n+ 1)), where Q is a common denominator of all function values.
One can show that the xi’s remain integer multiples of 1/Q. If we do not wish to make any assumption

16

on the values of fi, e.g., we want to work in the real model of computation, then finding Ti(u) will
require |Ci| oracle calls instead of a single one. Indeed, we omit the perturbation terms; then the
minimizer of fi(S)− w(S) will be an (xi, fi)-tight set, but not necessarily the minimal one. We can
try removing nodes from S one-by-one (using a cost function as in the proof of Lemma A.10), to
identify the minimal tight set Ti(u). On the other hand, Lemma A.10 does not require any integrality
assumption, and remains true even in the real model of computation.

A.2.4 The running time analysis

We now give the proof of Theorem A.1. We need to bound the number of push and relabel operations.

Relabel operations. Since the algorithm never relabels a node with d(v) ≥ n, the total number of
relabel operations is at most n2.

Push operations. It is convenient to index the iterations. If t is a push iteration, we let d(t), x(t),
G(t), E(t)

i , T (t)
i (v), N (t), P (t) denote the quantities d, x, G, Ei, Ti(v), N , P right before the push

operation. Recall the notions of saturating and non-saturating pushes from Section A.2.1: a push on
the i-arc (u, v) is saturating if ε = ci(u, v), and non-saturating if ε = −x(u) < ci(u, v). Note that
for non-saturating pushes, x(t+1)(u) = 0 holds; that is, u /∈ N (t+1). We first upper bound the total
number of saturating pushes.
Lemma A.11. The total number of saturating pushes on i-arcs is O(n|Ci|2). Thus the total number
of saturating pushes is O(n

∑r
i=1 |Ci|2).

Lemma A.11 is a consequence of the following lemma showing that, in between two saturating
pushes on the same arc (z, w), the distance label d(z) increases by at least one. Thus, for a fixed arc
(z, w), there are at most n saturating pushes. Since the total number of possible i-arcs is bounded by
|Ci|2, Lemma A.11 follows.
Lemma A.12. Suppose two iterations t < t′ push flow along the same i-arc (z, w). If both pushes
are saturating, d(t

′)(z) ≥ d(t)(z) + 1.

Proof: The main strategy behind the proof is to trace out the evolution of the tight set Ti(z) between
time t and t′. The relevant events for us will be the time steps τ where the tight set acquires new
nodes, i.e., T (τ+1)

i (z) \ T (τ)
i (z) is non-empty. For such an iteration τ , Lemma A.4(i) shows that we

push flow on an arc (u, v) with v ∈ T (τ)
i (z) and u /∈ T (τ)

i (z); we refer to these pushes as critical
pushes. Since the push on (z, w) at time t is saturating, w /∈ T (t+1)

i (z) (thus the arc (z, w) disappears
from the auxiliary graph). Since at time t′ > t we push on (z, w) again, there must be a sequence
of critical pushes that led to Ti(z) reacquiring w (and thus the reappearance of the arc (z, w) in the
auxiliary graph). The main strategy is to trace back this sequence of critical pushes, starting from the
first time Ti(z) gained back w and going backward in time until we reach time t.

More precisely, we define a sequence {(tj , uj , vj) : 0 ≤ j < k}, where tj ∈ [t, t′] is a time
step, and (uj , vj) is an arc, on which we push at time tj . The sequence goes backwards in time:
t′ > t0 > t1 > . . . > tk = t− 1.

Let t0 be the first time in the range [t+ 1, t′ − 1] such that w ∈ T (t0+1)
i (z). Note that there exists

such a time t0. As noted above, w /∈ T (t+1)
i (z). On the other hand, we push on (z, w) at time t′, so

w ∈ T (t′)
i (z). Since T (t0+1)

i (z) \ T (t0)
i (z) is non-empty, iteration t0 must perform a push on some

i-arc (u0, v0) (by Lemma A.4(i)). Let t1 ∈ [t − 1, t0) be the first time such that v0 ∈ T (t1+1)
i (z).

Either t1 = t − 1 or, at time t1, the algorithm performs a push on some i-arc (u1, v1) such that
v1 ∈ T (t1)

i (z) and u1 6∈ T (t1)
i (z). We continue defining (tj , uj , vj) based on (tj−1, uj−1, vj−1),

until we have tk = t− 1. Note that uk, vk are not defined. Let us highlight the key properties:{
vj ∈ T (j)

i (z), uj /∈ T (j)
i (z), ∀0 ≤ j ≤ k − 1

vj ∈ T
(tj+1+1)
i (z) \ T (tj+1)

i (z) ∀0 ≤ j ≤ k − 2.
(2)

We need to show d(t
′)(z) > d(t)(z). For a contradiction, assume d(t

′)(z) = d(t)(z); let d + 1
be this common value. Since the arc (z, w) is admissible both at time t and at t′, we see that
d(t
′)(w) = d(t)(w) = d. Since labels may only increase, d(τ)(z) = d+ 1 and d(τ)(w) = d for every

17

τ for t ≤ τ ≤ t′. We observe the following properties of the sequence {(tj , uj , vj) : 0 ≤ j < k}
defined above.

Claim: For all 0 ≤ j < k, we have d(tj)(uj) = d(tj)(vj) + 1 = d+ 1.

Proof: Since (uj , vj) is admissible in iteration tj , we immediately have d(tj)(uj) = d(tj)(vj) + 1.
Thus it suffices to show that d(tj)(uj) = d + 1. We can show that d(tj)(uj) ≥ d + 1 as follows.
By the first part of (2), vj ∈ T

(tj)
i (z), which gives d(tj)(vj) ≥ d(tj)(z) − 1 = d. Consequently,

d(tj)(uj) = d(tj)(vj) + 1 ≥ d+ 1.

We prove the reverse inequality d(tj)(uj) ≤ d+ 1 by induction. We start with the base case j = 0.
Since w ∈ T (t0+1)

i \ T (t0)
i , Lemma A.4(i) is applicable with z′ = w, showing that (u0, w) ∈ E(t0)

i .
Thus, d(t0)(u0) ≤ d(t0)(w) + 1 = d+ 1.

Assuming the claim is true for j, we now show it holds for j + 1. Using the third part of (2),
Lemma A.4(i) is applicable with z′ = vj , giving (uj+1, vj) ∈ E

(tj+1)
i , and thus

d(tj+1)(uj+1) ≤ d(tj+1)(vj) + 1 ≤ d(tj)(vj) + 1 = d(tj)(uj) ≤ d+ 1.

The second inequality used that the distance labels are non-decreasing. This completes the proof. �

The last step of the proof leverages the tie-breaking rule. Recall that if for a node u, there are more
than one admissible arcs (u, v), then we select v as the ≺-minimal one for a fixed linear ordering.

Claim: We have w � v0.

Proof: We first show that w � vk−1, and then, for every j = k − 2, k − 3, . . . , 0, we show that
vj+1 � vj . These together imply the claim.

Let us start by showing w � vk−1. Because vk−1 ∈ T (tk+1)
i (z) = T

(t)
i (z), we have (z, vk−1) ∈

E
(t)
i . Further, (z, vk−1) is admissible. This follows since d(t)(z) = d + 1 and d(t)(vk−1) ≤

d(tk−1)(vk−1) = d by the previous claim. Thus, w � vk−1 because of the tie-breaking rule.

Let us now show vj+1 ≺ vj . Using (2) and Lemma A.4(i), we have (uj+1, vj) ∈ E
(tj+1)
i . Again,

(uj , vj+1) is admissible, since d(tj+1)(uj+1) = d + 1 and d(tj+1)(vj) ≤ d(tj)(vj) = d, by the
previous claim. Since (uj+1, vj+1) is pushed, we get w � vj+1 ≺ vj by the induction hypothesis
and the tie-breaking rule. �

Using that w ∈ T (t0+1)
i \T (t0)

i , Lemma A.4(i) gives (u0, w) ∈ E(t0)
i and w 6= v0. Again, we see that

(u0, w) is admissible, since dt0(u0) = d + 1, and d(t0)(w) = d. However, we pushed on (u0, v0),
in contradiction to w � v0 shown in the previous claim. We thus derived a contradiction from the
assumption d(t

′)(z) = d(t). The proof of the lemma is complete. �

Now we upper bound the number of non-saturating pushes.

Lemma A.13. The total number of non-saturating pushes is O(n2
∑r
i=1 |Ci|2).

Proof: We say that u is active at time t if u ∈ N (t). To analyze the number of non-saturating pushes,
we use the standard potential function Φ(t) =

∑
v∈N(t) d(t)(v). We have Φ(0) = 0, and Φ(t) ≤ n2

at every time t. The relabel operations altogether increase Φ(t) by at most n2. Each saturating push
on (u, v) can activate v, increasing Φ(t) by at most n in the process. By Lemma A.11, the total
number of saturating pushes is O(n

∑r
i=1 |Ci|2), and thus the saturating pushes altogether increase

Φ by O(n2
∑r
i=1 |Ci|2). Each non-saturating push on (u, v) deactivates u but could activate v; since

(u, v) is admissible, d(u) = d(v) + 1 and thus the push decreases Φ(t) by at least 1. Therefore the
number of non-saturating pushes is at most O(n2

∑r
i=1 |Ci|2). �

Finally, let us call a non-saturating push on an i-arc (u, v) an expanding push, if Ti(v) (Ti(u)
before the push. A non-expanding push is a non-saturating push, where Ti(v) = Ti(u) before the
push.

Lemma A.14. Non-expanding pushes do not change any of the sets Ti(z). There can be at most |Ci|
expanding pushes on i-arcs between two saturating pushes on i-arcs. Further, non-saturating pushes
do not change the values min{d(w) : w ∈ Ti(z)} for any z ∈ Vi.

18

Proof: Consider a non-saturating push on an i-arc (u, v). By Lemma A.4(ii), we see that if T ′i (z) 6=
Ti(z) for some z ∈ Vi, then Ti(v) ⊆ Ti(z) ∩ Ti(u) (Ti(u). Consequently, the push is expanding.
Let us define the potential

Ψi := |{Ti(z) : z ∈ Vi}|,
i.e. the different number of sets among the Ti(z)’s. The same Lemma A.4(ii) implies that T ′i (v) =
T ′i (u) after the push; further, if Ti(z) = Ti(w) before the push, then T ′i (z) = T ′i (w) after the push.
Hence the value of Ψi decreases by at least one. Clearly, the non-expanding pushes do not affect Ψi.
Since Ψi ≤ |Ci|, we see the bound on the number of non-expanding pushes.

Let us now turn to the final claim. There is nothing to prove for non-expanding pushes, as they do not
affect any Ti(z)’s. If Ti(z) is modified during the expanding push on the i-arc (u, v), it is updated
to Ti(z) ∪ Ti(u), with v ∈ Ti(z) ∩ Ti(u). We have d(u) = d(v) + 1, and d(u) ≤ d(w) + 1 for
any v′ ∈ Ti(u), therefore d(v) = min{d(w) : v ∈ Ti(u)}. The claim follows since v ∈ Ti(z) and
therefore min{d(w) : w ∈ Ti(z)} ≤ d(v). �

Proof of Theorem A.1: At initialization, we compute all sets Ti(z), in running time
∑
i∈r |Ci|Θi.

We note that for z /∈ Vi, we have Ti(z) = {z} throughout and hence these sets do not need to be
maintained. The initial solutions xi can be obtained in time O(

∑
i∈r |Ci|) using the greedy algorithm

for each fi (recall that a value oracle call is assumed to take O(1) time).

At every push operation, we need to call CAPACITY-UPDATE. Lemmas A.11 and A.13 give a bound
O(n2Θmax

∑r
i=1 |Ci|2). We use Θmax, since we do not have individual bounds for non-saturating

pushes on i-arcs, just on their total number.

The operations described in Algorithm 1 correctly update the sets Ti(u). After every saturating push
on an i-arc (u, v), we call TIGHT-UPDATE(z, i) for every arc (z, v) ∈ Ei. By Lemma A.4(i), all
other sets Ti(z) are unchanged. Also, we see that for non-saturating pushes, Lemma A.4(ii) implies
that setting T ′i (z) = Ti(z) ∪ Ti(u) whenever v ∈ Ti(z), and u /∈ Ti(z) correctly updates the sets.

In order to achieve a better complexity bound, we now describe an alternative variant. Instead of
maintaining the graph G = (V,E) explicitly, we just keep track of a node v ∈ Ti(u) with d(v)
minimal, for every i ∈ [r] and every u ∈ Vi. Let

βi(u) := argmin{d(v) : v ∈ Ti(u)}
denote this node. We further maintain β∗(u) := argmin{βi(u) : u ∈ Vi} as an out-neighbour of u of
minimum label. Given these values, identifying admissible arcs and computing the new label values
are trivial.

Let us now describe how the βi(u) and β∗(u) values can be maintained. Lemma A.14 shows that no
changes are required for non-saturating pushes. Whenever we perform a saturating push on an i-arc
(u, v), let us call TIGHT-UPDATE(z, i) for every z ∈ Vi, to recompute all sets Ti(z).7 We then find the
new βi(z)’s, and also update β∗(z) if needed. These operations take |Ci|(Θi + |Ci|) ≤ 2|Ci|Θi time.
According to Lemma A.11, their total complexity is bounded by O(n

∑r
i=1 |Ci|3Θi) throughout the

algorithm.

Whenever we increase the label of a node u, we also recompute all the Ti(z)’s for every i with u ∈ Vi,
and every z ∈ Vi. One such update requires

∑
i:u∈Vi

|Ci|(Θi + |Ci|) ≤ 2
∑
i:u∈Vi

|Ci|Θi time. We
recall that every node label can increase at most n times. Hence the total complexity of these updates
is at most

2n
∑
i∈V

∑
i:u∈Vi

|Ci|Θi = 2n

r∑
i=1

∑
u∈Vi

|Ci|Θi = 2n

r∑
i=1

|Ci|2Θi.

We see that the running time of the capacity updates dominates the overall running time. �

A.3 Preflow-push algorithm with excess scaling

In the previous section, we analyzed the basic version of preflow-push. Our framework allows for
adaptation of other more advanced versions and in this section, as an example, we consider the scaling
version of preflow-push. This is the adaptation of the classical excess scaling algorithm for maximum
flows, as described in [1, Section 7.9].

7Note that we do not only call this for z with v ∈ Ti(z). The reason is that we do not maintain the Ti(z)’s,
and hence cannot decide whether v ∈ Ti(z) holds.

19

The algorithm runs in scaling phases, governed by the scaling factor ∆. This is initialized as ∆ = 2k

for the smallest value of k such that ∆ ≥ maxu∈N −x(u) of an initial solution x =
∑r
i=1 xi, xi is a

vertex of B(fi). Clearly, we can select k ≤ log2 Fmax + 1.

Throughout the ∆-phase, we maintain the invariant that

x(u) ≥ −∆ ∀u ∈ V. (3)

In each iteration in the ∆-phase, the algorithm finds the indices u with x(u) < −∆/2 and among
those, finds the one with minimum label d(u). If there are admissible arcs from u, the algorithm
pushes on the admissible i-arc (u, v) with the minimum v. Otherwise, the algorithm updates d(u) by
the usual relabel operation. The amount to push on an i-arc (u, v) is

min{−x(u), ci(u, v),∆ + x(v)}.
The last term is needed, so that the resulting x(v) after the push is at least −∆. The ∆-phase
terminates, once x(u) > −∆/2 holds for all u ∈ N \ H . We select the next scaling factor as
∆← ∆/2.

We selected the initial value of ∆ as a power of 2. We terminate at the end of the 1-phase. Hence if the
fi’s are integer, then we can maintain integrality throughout. The condition that x(u) > −1/2 for all
u ∈ N \H means that x(u) = 0 for all such notes. The termination subroutine of the preflow-push
algorithm is applicable to find a minimizer of f(S).
Lemma A.15. The scaling algorithm performs at most O(n2 logFmax) non-saturating pushes.

Proof: Consider the potential function

Φ := −
∑
u∈N

x(u)d(u)

∆
.

Relabelling u increases Φ by 0 ≤ −x(u)/∆ ≤ 1. Thus, all relabel operations together increase
Φ by O(n2). Due to (3), 0 ≤ Φ ≤ n2 throughout. The rescaling at the end of a phase doubles Φ,
but because of this upper bound, these increases amount to a total O(n2 logFmax), noting that the
number of phases is bounded by log2 Fmax + 1.

Each push on any i-arc (u, v) decreases Φ, because d(u) > d(v). Recall that selection rule of pushing
from a node u with minimal label d(u). Therefore, for every push on (u, v), it must be the case
that x(v) ≥ −∆/2, i.e., ∆ + x(v) ≥ ∆/2. Thus, a non-saturating push always pushes at least
min{−x(u),∆ + x(v)} ≥ ∆/2 unit of flow. Therefore, a non-saturating push decreases Φ by at
least 1/2. We conclude that the number of non-saturating pushes is O(n2 logFmax). �

Theorem A.16. The scaling algorithm runs in time O(n2Θmax logFmax + n
∑r
i=1 |Ci|3Θi).

Proof: The proof correctness and the bound on the number of saturating pushes, as well as the bounds
on the time complexity of the update operations are the same as in Section A.2 for the preflow-push
algorithm. We use the bound on non-saturating pushes from the previous lemma. �

B Rates of convergence of the continuous DSFM algorithms

The following theorems state the running time dependence of the continuous algorithms given in
Section 3, as a function of the parameters defined in Definition 3.1 and Definition 3.2.

Theorem B.1 ([25]). Let (a(0), x(0) = argminx∈P‖a(0)−x‖2) be the initial solution and let (a∗, x∗)
be an optimal solution to (Best-Approx). The alternating projection algorithm produces in

k = Θ

(
κ2∗ ln

(
‖x(0) − x∗‖2

ε

))
iterations a pair of points a(k) ∈ A and x(k) ∈ P that is ε-optimal, i.e.,

‖a(k) − x(k)‖22 ≤ ‖a∗ − x∗‖22 + ε.

Theorem B.2 ([6]). Let x(0) ∈ P be the initial solution and let x∗ be an optimal solution to
(Prox-DSFM) that minimizes ‖x(0) − x∗‖2. The random coordinate descent algorithm produces in

k = Θ

(
r

`∗
ln

(
‖x(0) − x∗‖2

ε

))

20

iterations a solution x(k) that is ε-optimal in expectation, i.e., E
[
1
2‖Ax

(k)‖22
]
≤ 1

2‖Ax
∗‖22 + ε.

The accelerated coordinate descent algorithm produces in

k = Θ

(
r

√
1

`∗
ln

(
‖x(0) − x∗‖2

ε

))
iterations (specifically, Θ

(
ln
(
‖x(0)−x∗‖2

ε

))
epochs with Θ

(
r
√

1
`∗

)
iterations in each epoch) a

solution x(k) that is ε-optimal in expectation, i.e., E
[
1
2‖Ax

(k)‖22
]
≤ 1

2‖Ax
∗‖22 + ε.

C Proofs omitted from Section 5

Lemma C.1. The capacity c(u, v) := min{fi(S) − xi(S) : S ⊆ Ci, u ∈ S, v /∈ S} can be
computed as the minimum value of minS⊆Ci

fi(S) + w(S) for an appropriately chosen vector
w ∈ Rn, supp(w) ⊆ Ci.
Proof: We define a weight vector w ∈ Rn as follows: w(u) = −(fi({u}) + 1); w(v) = −(fi(Ci)−
fi(Ci \ {v})− 1); w(a) = −x(a) for all a ∈ Ci \ {u, v}, and w(a) = 0 for all a /∈ Ci. Let A ⊆ Ci
be a minimizer of minS⊆Ci

fi(S) + w(S). It suffices to show that u ∈ A and v /∈ A. Note that
fi({u}) = fi({u})− f(∅) is the maximum marginal value of u, i.e., maxS(fi(S ∪ {u})− fi(S)).
Moreover, fi(Ci)− fi(Ci \ {v}) is the minimum marginal value of v. To show u ∈ A, let us assume
for a contradiction that u /∈ A.

fi(A ∪ {u}) + w(A ∪ {u})
= (fi(A) + w(A)) + (fi(A ∪ {u})− fi(A)) + w(u)

= (fi(A) + w(A)) + (fi(A ∪ {u})− fi(A))

− fi({u}) + 1

≤ fi(A) + w(A)− 1.

Similarly, to show that v /∈ A, suppose for a contradiction that v ∈ A, and consider the set A \ {v}.
Since fi(Ci)− fi(Ci \ {v}) ≤ fi(A)− fi(A \ {v}), we have

fi(A \ {v}) + w(A \ {v})
= (fi(A) + w(A))− (fi(A)− fi(A \ {v}))− w(v)

= (fi(A) + w(A))− (fi(A)− fi(A \ {v}))
+ (fi(Ci)− fi(Ci \ {v}))− 1

≤ fi(A) + w(A)− 1.

Therefore u ∈ A and v /∈ A, and hence A ∈ argmin{fi(S)− xi(S) : u ∈ S, v /∈ S}. �

D Full experimental results

We evaluate the algorithms on energy minimization problems that arise in image segmentation
problems. We follow the standard approach and model the image segmentation task of segmenting an
object from the background as finding a minimum cost 0/1 labeling of the pixels. The total labeling
cost is the sum of labeling costs corresponding to cliques, where a clique is a set of pixels. We refer
to the labeling cost functions as clique potentials.

The main focus of our experimental analysis is to compare the running times of the decomposable
submodular minimization algorithms. Therefore we have chosen to use the simple hand-tuned
potentials that were used in previous work [30, 2, 31]: the edge-based costs defined by [2] and
the count-based costs defined by [31]. Specifically, we used the following clique potentials in our
experiments, all of which are submodular:

• Unary potentials for each pixel. The unary potentials are derived from Gaussian Mixture
Models of color features [27].

• Pairwise potentials for each edge of the 8-neighbor grid graph. Each graph edge (i, j)
between pixels i and j is assigned a weight that is a function of exp(−‖vi − vj‖2), where
vi is the RGB color vector of pixel i. The clique potential for the edge is the cut function of
the edge: the cost of a labeling is equal to zero if the two pixels have the same label and it is
equal to the weight of the edge otherwise.

21

• Square potentials for each 2× 2 square of pixels. We view a 2× 2 square as a graph on 4
nodes connected with 4 edges (two horizontal and two vertical edges). The cost of a labeling
is the square root of the number of edges of the square that have different labels. This is the
basic edge-based potential defined by [2].

• Region potentials for a set of regions of the image. We compute a set of regions of
the image using the region growing algorithm suggested by [31]. For each region Ci,
we define a count-based clique potential as in [31, 30]: for each set S ⊆ Ci of pixels,
fi(S) = |S||Ci \ S|.

We used five image segmentation instances to evaluate the algorithms8. Table 1 in the supplement
provides the sizes of the resulting instances. The experiments were carried out on a single computer
with a 3.3 GHz Intel Core i5 processor and 8 GB of memory. The reported times are averaged over
10 trials.

We have run the coordinate descent algorithms for 1000r iterations, where r is the number of functions
in the decomposition. Our choice is based on the empirical results of Jegelka et al. [19] that showed
that this number of iterations suffices to obtain good results. The running time per iteration of ACDM
is higher than RCDM, but ACDM converges faster both theoretically and empirically [6].

We performed several experiments with various combinations of potentials and parameters.

Minimum cut experiments. We evaluated the algorithms on instances containing only the unary
potentials and the pairwise potentials.

Small cliques experiments. We evaluated the algorithms on instances containing the unary potentials,
the pairwise potentials, and the square potentials.

Large cliques experiments. We evaluated the algorithms on instances containing all of the potentials:
the unary potentials, the pairwise potentials, the square potentials, and the region potentials. For the
region potentials, we used a potential-specific level-0 algorithm that performs quadratic minimization
over the base polytope in time O(|Ci| log(|Ci|) + |Ci|EOi). Additionally, due to the slow running
time of IBFS, we used smaller regions: 50 regions with an average size between 45 and 50.

Large cliques experiments with Fujishige-Wolfe algorithm. We also ran a version of the large
cliques experiments with the Fujishige-Wolfe algorithm as the level-0 algorithm for the region poten-
tials. The Fujishige-Wolfe algorithm was significantly slower than the potential-specific quadratic
minimization algorithm and in our experiments it was prohibitive to run the Fujishige-Wolfe algorithm
to near-convergence. Since the IBFS algorithm requires almost exact quadratic minimization in order
to compute exchange capacities, it was prohibitive to run the IBFS algorithm with the Fujishige-Wolfe
algorithm. In contrast, the coordinate descent methods can potentially make progress even if the
level-0 solution is far from being converged.

In order to empirically evaluate this hypothesis, we made a simple but crucial change to the Fujishige-
Wolfe algorithm: we warm-started the algorithm with the current solution. Recall that the coordinate
descent algorithms maintain a solution xi ∈ B(fi) for each function fi in the decomposition. We
warm-started the Fujishige-Wolfe algorithm with the current solution xi, and we ran the algorithm
for a small number of iterations. In our experiments, we ran the Fujishige-Wolfe algorithm for 10
iterations. These changes made the level-0 running time considerably smaller, which made it possible
to run the level-1 coordinate descent algorithms for as many as 1000r iterations. At the same time,
performing 10 iterations starting from the current solution seemed enough to provide an improvement
over the current solution.

8The data is available at http://melodi.ee.washington.edu/~jegelka/cc/index.html and
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/
segmentation/grabcut.htm

22

http://melodi.ee.washington.edu/~jegelka/cc/index.html
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm

Table 1: Instance sizes
image # pixels # edges # squares

bee 273280 1089921 68160
octopus 273280 1089921 68160
penguin 154401 615200 38400

plant 273280 1089921 68160
plane 154401 615200 38400

regions min, max, and average region size
50 298 299 298.02
49 7 299 237.31
50 5 299 279.02
50 8 298 275.22
50 10 299 291.48

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

bee (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

octopus (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

R
u
n
n
in

g
 T

im
e

penguin (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

plant (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

R
u
n
n
in

g
 T

im
e

plane (all experiments)

IBFS (mincut)

IBFS (small cliques)

IBFS (large cliques)

RCDM (mincut)

RCDM (small cliques)

RCDM (large cliques)

ACDM (mincut)

ACDM (small cliques)

ACDM (large cliques)

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

700

800

900

R
u
n
n
in

g
 T

im
e

plant (large cliques with Fujishige-Wolfe)

RCDM
ACDM

Figure 3: Running times (in seconds). The x-axis shows the number of iterations for the continuous
algorithms. The IBFS algorithm is exact, and we display its running time as a flat line.

23

0 200 400 600 800 1000
#iterations / #functions

0

50

100

150

200

R
u
n
n
in

g
 T

im
e

bee-mincut

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

50

100

150

200

R
u
n
n
in

g
 T

im
e

octopus-mincut

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

20

40

60

80

100

R
u
n
n
in

g
 T

im
e

penguin-mincut

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

50

100

150

200
R

u
n
n
in

g
 T

im
e

plant-mincut

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

20

40

60

80

100

R
u
n
n
in

g
 T

im
e

plane-mincut

IBFS
RCDM
ACDM

Figure 4: Running times (in seconds) for the minimum cut experiments. The x-axis shows the number
of iterations for the continuous algorithms. The IBFS algorithm is exact, and we display its running
time as a flat line.

24

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

bee-small-cliques

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

octopus-small-cliques

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

R
u
n
n
in

g
 T

im
e

penguin-small-cliques

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000
R

u
n
n
in

g
 T

im
e

plant-small-cliques

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

R
u
n
n
in

g
 T

im
e

plane-small-cliques

IBFS
RCDM
ACDM

Figure 5: Running times (in seconds) for the small cliques experiments. The x-axis shows the number
of iterations for the continuous algorithms. The IBFS algorithm is exact, and we display its running
time as a flat line.

25

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

bee-large-cliques-qmin

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

700

800

900

R
u
n
n
in

g
 T

im
e

octopus-large-cliques-qmin

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

R
u
n
n
in

g
 T

im
e

penguin-large-cliques-qmin

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

700

800

900

R
u
n
n
in

g
 T

im
e

plant-large-cliques-qmin

IBFS
RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

R
u
n
n
in

g
 T

im
e

plane-large-cliques-qmin

IBFS
RCDM
ACDM

Figure 6: Running times (in seconds) for the large cliques experiments with potential specific
quadratic minimization for the region potentials. In order to be able to run IBFS, we used smaller
regions: 50 regions with an average size between 45 and 50. The x-axis shows the number of
iterations for the continuous algorithms. The IBFS algorithm is exact, and we display its running
time as a flat line.

26

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

bee (large cliques with Fujishige-Wolfe)

RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

200

400

600

800

1000

R
u
n
n
in

g
 T

im
e

octopus (large cliques with Fujishige-Wolfe)

RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

R
u
n
n
in

g
 T

im
e

penguin (large cliques with Fujishige-Wolfe)

RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

600

700

800

900
R

u
n
n
in

g
 T

im
e

plant (large cliques with Fujishige-Wolfe)

RCDM
ACDM

0 200 400 600 800 1000
#iterations / #functions

0

100

200

300

400

500

R
u
n
n
in

g
 T

im
e

plane (large cliques with Fujishige-Wolfe)

RCDM
ACDM

Figure 7: Running times (in seconds) for the large cliques experiments with the Fujishige-Wolfe
algorithm. The x-axis shows the number of iterations for the continuous algorithms. We could not
run the IBFS algorithm on these instances.

27

	Introduction
	Prior work
	Our contributions

	Discrete optimization algorithms on Level-1
	Convex optimization algorithms on Level-1
	Convex formulations for DSFM
	Level-1 algorithms based on gradient descent
	Rates of convergence and condition numbers
	Tight analysis for the condition numbers and running times

	Tight convergence bounds for the convex optimization algorithms
	The level-0 algorithms
	Experimental results
	Level-1 algorithms based on the network flow approach
	Preflow-push algorithm
	Analysis
	Evolution of the auxiliary graph
	Termination
	Subroutines for auxiliary graph updates
	The running time analysis

	Preflow-push algorithm with excess scaling

	Rates of convergence of the continuous DSFM algorithms
	Proofs omitted from Section 5
	Full experimental results

