Anam Farrukh

Webpage: http://cs-people.bu.edu/afarrukh/

Phone: +1(781) 971-1446

Email: afarrukh@bu.edu

2016-Present

2012-2014

2017 - Present

RESEARCH INTERESTS

Distributed real-time embedded systems, Cyber-physical safety & time criticality systems in particular those in automotive and avionics application domains, Hardware Software co-design and interface, Autonomous flight management systems

EDUCATION

PhD. in Computer Engineering

Boston University-College of Engineering, Boston, USA **Research Advisor:** Professor Richard West Selective Course Work: Introduction to OS, Computer Architecture, Advanced Digital Design in Verilog, Digital VLSI circuit Design

Masters of Science in Electrical Engineering

Lahore University of Management Sciences (LUMS), Lahore, Pakistan Specialization: Electronics and Embedded Systems

Thesis title: A Configurable, Multi-Cycle Integer and Floating Point MIPS pipeline simulation Tool for Educational Purposes *Thesis Advisor*: Professor Jahangir Ikram

Selective Course Work: Embedded Systems, Computer Architecture, Digital Control Systems, Digital Signal Processing, Power Electronics

PROFESSIONAL SERVICES

Boston University

- **Reviewer** for the Real-Time System Track of the 41th IEEE Real-Time Systems Symposium (*RTSS 2020*)
- **Reviewer** for the Real-Time System Track of the 40th IEEE Real-Time Systems Symposium (*RTSS 2019*)
- Reviewer for the 15th Annual Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT 2019) Satellite Workshop of 31th Euromicro Conference on Real-Time Systems (ECRTS 2019)
- **Reviewer** for the 25th IEEE Real-Time and Embedded Technology and Applications Symposium (*RTAS 2019*)
- **Reviewer** for 24th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (*RTCSA 2018*)
- **Reviewer** for the CPS/HW-SW Integration/IoT Track of the 39th IEEE Real-Time Systems Symposium (*RTSS 2018*)
- Graduate Teaching Fellow at Boston University

*(CS: Computer Science, EC: Computer Engineering)

- CS-112: Introduction to Computer Science II (Summer 2020) (Java Programming Language Introduction)
- CS-350: Fundamentals of Computer Systems (*Fall 2019, Spring 2020*)
- CS-591: Topics in Computer Science (Summer-II 2019)
- o CS-111: Introduction to Computer Science 1 (Summer-I 2019)
- CS-552: Operating Systems (Spring 2018,2019)
- o EC-440: Introduction to Operating Systems (Fall 2017,2018)
- o CS-410: Advanced Software Systems (Fall 2018)
- EC-327: Software Engineering (Summer 2018,2017)

PUBLICATIONS

- Anam Farrukh and Richard West, "smARTflight: An Environmentally-Aware Adaptive Real-Time Flight Management System", in Proceedings of the 32nd Euromicro Conference on Real-Time Systems (ECRTS), Modena, Italy, 7-10 July, 2020. (Outstanding Paper, Best Paper Award)
- Michel Kinsy, Shreeya Khadka, Mihailo Isakov and Anam Farrukh, "Hermes: Secure Heterogeneous Multicore Architecture Design" in IEEE International Symposium on Hardware Oriented Security and Trust (HOST), May 2017

2017

2020

SELECTIVE RESEARCH & PROJECTS

•	PhD research project for designing smart multirotor UAVs (quadcoters) that are able to	
	autonomously reason about the external environments by adapting flight control	
	behaviors and mission objectives in real time, during flight.	
	 FlyOS: An autonomous flight management, on-chip distributed system on a 	
	combined Linux + Quest(-V) platform (current)	
	 smARTflight: An Environmentally-Aware Adaptive Real-Time Flight 	
	Management System (2019)	
	 A firmware plugin to extend legacy autopliots for better response time, 	
	accuracy and energy performance.	
	and tasks safety criticality factor	
	 Design of an adaptive criticality-aware real-time scheduler 	
	 Reference autopilot firmware: Cleanflight 	
		2018-Present
•	PhD project in computer architecture for designing an open-source RISC-V based multi-	
	core system implementation in Verilog prototyped on an FPGA. The objective was to	
	develop the necessary tools and a versatile research & teaching infrastructure for future	
	architectural design space exploration. This project was an extension of the original	
	Heracles Project (<u>http://projects.csail.mit.edu/heracles/</u>) by my adviser: Professor Michel	
	Kinsy.	2016-2017
٠	Development of a basic single address space operating system as part of the	
	Introduction to OS course taught by Prof. Richard West.	
	 Bare metal kernel development, Keyboard driver implementation 	
	 x86 assembly for custom bootloader, RAM based file system development, 	
	FIFO/RR scheduler design, implementation of kernel thread libraries, GNU linker	
	scripts	2017
•	Master's Thesis: "Extension of "Visual MIPS" an integer based MIPS educational, simulation tool to a fully configurable Floating Point processor in Visual Basic" <u>https://www.scribd.com/doc/291492240/A-Configurable-Multi-Cycle-Integer-And-Floating-Point-</u>	
	<u>MIPS-Pipeline-Simulation-Tool-For-Educational-Purposes-Report-of-the-First-</u>	
	<u>Release?secret_password=pZIbVnc6IWjxS5DgAWj0</u>	
		2013 - 2015
•	A quad-core processor design, with shared banked data cache and private instruction	
	(semester project)	2017
-	Designed lawsuits and asherestics of digital gates in Cadenae for Digital VICI sourceswork	2017
•	Sparse Matrix-Vector Multiplier implementation in Verilog to verify results of a research	2010
	Multiplication" by Fowers et. al. (semester project)	2016
•	Developed the front end of Micro-Finance Application web portal on Angular IS as a	
	Software Engineer at Techlogix Inc. (https://www.techlogix.com/)	2015
•	Magnetic Levitation System with an analog DL controller and IB concer feedback	2015
•	magnetic Levitation System with an analog Pi controller and it sensor recuback	2014
	mechanism to control current now to an electromagnet	2014
•	Undergraduate Senior Year Project: "Design and Implementation of a 5-stage Pipelined	
	MIPS processor on a Xilinx FPGA"	
	 Designed in VHDL and mapped onto a Xilinx Spartan 3E Nexys-2 FPGA board. 	
	Optimized the processor design with stall detection, forwarding logic and static	
	branch prediction.	
	 Assembler design for MIPS-32 assembly programs 	2011-2012
RELEV	ANT SKILLS	
-	Languages.	

 C,C++, Java, Python, Embedded C, Visual Basic, VHDL, Verilog, x86, MIPS & RISC-V assembly language, Javascript

• Platforms and IDEs:

 Cleanflight/Betaflight Flight Controller Firmware, Cadence, MATLAB, LT Spice IV, Linux, Quest(-V), Xilinx FPGAs, QTCreator, MINI6410, PIC 18F452, Arduinos, Electric Software (digital VLSI SoC design), Co-create, Apache Cloudstack Cloud Orchestration Platform, Citrix XenServer, Citrix Netscaler, AngularJS, ModelSim