Cloud-Enabled Big-Data Analytics: The Sky's the Limit

Managing Trust in the Cloud

Kinan Dak Albab Rawane Issa
PhD Students, Boston University
Hariri Institute for Computing
Software Application & Innovation Lab
https://multiparty.org/
Trust and Computer Science

1. Public to trust correctness, security, and privacy of our solutions.
2. Data contributors to trust our algorithms and tools.
3. Policy makers to trust correctness and accountability of our algorithms and models.
4. Computer Scientists and researchers to trust the community and each other.
5. Business leaders, service providers, and resource providers to trust each other.
Can we compute the salary gap among genders and ethnicities without violating companies privacy concerns and revealing employee's records?
During a global “cyber-attack” like the WannaCry ransomware attack, can we tell how far (in a network) we are from an infected PC without revealing if we are infected ourselves?
Can we create a dating app which checks if two people are interested in each other but does not reveal to any party possible unreturned romantic interest?
Can we conduct statistical analysis on medical data without revealing patient’s privacy?
YES we can.
Trust Management in the Cloud is Critical!

1. Sensitive / Valuable (“Big”) Data
2. Multiple computing parties / service providers
3. Multiple maintainers / managers of machines
4. Security of Data and Service
Who to trust?

Data Contributor:

1. Algorithm / Code
2. Service providers
3. Cloud providers
4. Code delivery mechanisms and CDNs
5. Computing stack

Service Provider:

1. Developers / Software
2. Data Contributor
3. Cloud Providers
4. Code delivery
5. Computing stack
Everybody has to trust everybody else!
Cryptography is as much a Social Science as it is a Mathematical/Computer Science.
Traditional “Solutions”

1. Trust blindly
2. Contract, regulation and policy
3. Anonymization
Secure Multi-Party Computation (MPC)

Sharing knowledge without sharing data*

\[K = f (\text{CONFIDENTIAL, CONFIDENTIAL, ...}) \]

* under certain security assumptions
Sum all numbers without revealing them
Compute secret shares

Shares of “50”
Send shares to corresponding parties

One share from each secret
Sum received shares

-572
1173
-441
Sum resulting three shares

\[-572\]

\[1173\]

\[-441\]

Sum = 160
Pay Equity

1. Use MPC to aggregate salary and employee information from many companies in the Boston area.
2. Analyse the aggregate to study pay equity between genders and ethnicities.
Contributor A

true data A + random mask A = masked data A

Service Provider (e.g., BU)
(web server/database)

masked data A + masked data B = masked aggregate data

Analyst (e.g., BWWC)
(client running web browser)

masked aggregate data

Contributor B

true data B + random mask B = masked data B

Public-key Encrypted Storage
only Analyst has key; no one else (including the S.P.) can read the content of this data

random mask A + random mask B = aggregate mask

true aggregate data
<table>
<thead>
<tr>
<th>Partner(s)</th>
<th>Application(s)</th>
<th>Stage</th>
</tr>
</thead>
</table>
| CITY of BOSTON | • Secure aggregation of tabular and multiple choice response data from multiple companies
• In upcoming deployment: correlations between multiple choice responses | • Deployed twice (5/2015, 6/2016)
• Actual result data published in report by BWOC (1/2017)
• Upcoming deployment (9/2017) |
| Greater Boston Chamber of Commerce | • Secure aggregation and analysis of tabular data from multiple companies | • Implementation ready
• Deployment planned (early 2018) |
| Eastern Bank | • Secure aggregation of tabular data and multiple choice response data from multiple banking organizations | • Implementation ready
• Awaiting deployment timeline |
| MBAA/Federal Reserve Bank of Boston | • Machine learning over sensitive consumer data subject to consumer-specified policies to enhance web services (e.g., route recommendation) | • Prototypes under development |
| Honda Research Institute | • Enhancement of mobile health intervention apps and data sharing tools with secure aggregate to add value for users and clinicians/researchers | • Application features under development
• Deployment planned (2018) |
| Hey.Charlie | | • In discussions with stakeholders |
| Pardee School Initiative on Forced Migration and Human Trafficking | • Secure aggregation of tabular data from multiple organizations | |
Long Term Vision

Contributor
- Makes data available
- Sets/chooses policies

Broker/Market
- Identifies data contributors and analysts that have mutually compatible analysis algorithms/data policies
- Helps data contributors craft or choose from possible policies, and helps analysts choose algorithms

Data Analyst
- Defines analysis algorithms
- Chooses performance criteria
- Examines results

Compute Service Provider
- Ingests and stores secret-shared data
- Performs MPC computations
- Optimizes where policies allow

Code Distributors
- Distributes code to contributors and/or service providers
- Provides assurance or auditing that code is from the right analyst
Collaborators and Research Group

“Researchers at Boston University, together with collaborators at several other institutions and organizations, are developing open-source libraries, frameworks, and systems that enable the implementation and deployment of applications that employ secure multi-party computation in accessible and scalable ways.”

https://multiparty.org/

Please contact us if you would like to learn more or are interested in collaborating.
Thank you!

babman@bu.edu ra1issa@bu.edu