Aarhus University special edition

Constraint hiding constrained PRF for NC1 from LWE
Ran Canetti, Yilei Chen, from Boston University

Aarhus University special edition

Constraint hiding constrained PRF for NC1 from LWE
Ran Canetti, Yilei Chen, from Boston University

Once upon a time, a Swede, a Dane, and a Norwegian found themselves on a small island.

There's a cannibal tribe on the island. They imprison the three man. Each of the three man is allowed to make a final wish.

Norwegian: I want to meet my wife.

Norwegian: I want to meet my wife.
The cannibals agree. Finally they eat the Norwegian and turn his skin into a canoe.

Swede: I want to have another cigarette.

Swede: I want to have another cigarette.
The cannibals agree. Finally they eat the Swede and turn his skin into a canoe.

Dane: ...

Dane: I want a puncturable PRF!

Dane: I want a puncturable PRF!
Then you cannot turning my skin into a canoe!!!!!!

Puncturable/constrained PRF

[Boneh, Waters 13, Kiayias, Papadopoulos, Triandopoulos, Zacharias 13, Boyle, Goldwasser, Ivan 14, Sahai, Waters 14]
original key

Puncturable/constrained PRF
[Boneh, Waters 13, Kiayias, Papadopoulos, Triandopoulos, Zacharias 13, Boyle, Goldwasser, Ivan 14, Sahai, Waters 14]

original key

Puncture $\left(K, x^{*}\right)=>K\left\{x^{*}\right\}$ s.t. $F_{k}\left(x^{*}\right)$ is pseudorandom, give the $K\left\{x^{*}\right\}$ that preserve the original outputs elsewhere.

Puncturable/constrained PRF
[Boneh, Waters 13, Kiayias, Papadopoulos, Triandopoulos, Zacharias 13, Boyle, Goldwasser, Ivan 14, Sahai, Waters 14]

original key

Puncture $\left(K, x^{*}\right)=>K\left\{x^{*}\right\}$ s.t. $F_{k}\left(x^{*}\right)$ is pseudorandom, give the $K\left\{x^{*}\right\}$ that preserve the original outputs elsewhere.

In general: Constrain(K, C) => $\mathrm{K}\{\mathrm{C}\}$

Puncturable/constrained PRF

Puncture $\left(K, x^{*}\right)=>K\left\{x^{*}\right\}$ s.t. $F_{k}\left(x^{*}\right)$ is pseudorandom, give the $K\left\{x^{*}\right\}$ that preserve the original outputs elsewhere.

In general: Constrain $(\mathrm{K}, \mathrm{C})=>\mathrm{K}\{\mathrm{C}\}$
They have many applications (delegate PRF, broadcast encryption, identity-based KE, ...) best known for being good friends of iO

Puncturable PRF from GGM

[Goldreich, Goldwasser, Micali 84]

Puncturable PRF from GGM

[Goldreich, Goldwasser, Micali 84]
original
fresh random

Puncturable PRF from GGM

[Goldreich, Goldwasser, Micali 84]
original
fresh random

The constrained key reveals the point x

What about hiding the constraint?

Dane: I want a puncturable PRF!
Then you cannot turning my skin into a canoe!!!!!!

Dane: I want a puncturable PRF!
Then you cannot turning my skin into a canoe!!!!!! YOU DON'T EVEN KNOW HOW I PUNCTURED

Some motivation scenario:
"Tricky" encryption key

Some 3-letter agent

Some motivation scenario:

"Tricky" encryption key

Some 3-letter agent

Some motivation scenario:

"Tricky" encryption key

corrupted key
(changed on some values)

Some 3-letter agent

Boneh, Lewi, Wu (PKC17, eprint 2015/1167)

What

Where

How

Boneh, Lewi, Wu (PKC17, eprint 2015/1167)

What are Constraint-Hiding CPRFs: an indistinguishability-based definition

Where

How

Boneh, Lewi, Wu (PKC17, eprint 2015/1167)

What are Constraint-Hiding CPRFs: an indistinguishability-based definition

Where to find them (secure for many keys):

- iO(PPRF) is CHCPRF
- Can achieve bit-fixing, puncturing under multilinear DDH, subgroup-hiding

How

Boneh, Lewi, Wu (PKC17, eprint 2015/1167)

What are Constraint-Hiding CPRFs: an indistinguishability-based definition

Where to find them (secure for many keys):

- iO(PPRF) is CHCPRF
- Can achieve bit-fixing, puncturing under multilinear DDH, subgroup-hiding

How to use them:
Private-key deniable encryption
Privately-detectable watermarking,
Searchable encryption

This talk:
Canetti, Chen (Eurocrypt17)
What

Where

This talk:
Canetti, Chen (Eurocrypt17)

What are Constraint-Hiding CPRFs:

A simulation-based definition of CHCPRF

Where

This talk:
Canetti, Chen (Eurocrypt17)

What are Constraint-Hiding CPRFs:

A simulation-based definition of CHCPRF

Where to find them:
Simulation-based 1-key CHCPRFs for NC1 from Learning With Errors

This talk:
Canetti, Chen (Eurocrypt17)

What are Constraint-Hiding CPRFs:
A simulation-based definition of CHCPRF

Where to find them:
Simulation-based 1-key CHCPRFs for NC1 from Learning With Errors

How to use them:

- 1-key CHCPRF implies 1-key private-key functional encryption (reusable garbled circuits)
- 2-key CHCPRF implies obfuscation*

Plan for the talk:

Part 1: Definition, relation to obfuscation, functional encryption
Part 2: How to construct CHCPRFs, more on GGH15 mmaps

Defining constraint-hiding constraint PRF (CHCPRF)

Master_KeyGen -> MSK

definition of CHCPRF

Master_KeyGen -> MSK
 Cons(MSK, C) -> K[C]

definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

definition of CHCPRF

Simulation-based CHCPRF [CC 17]

for all p.p.t. adv, there's a simulator, such that the outputs of the real and simulated distributions are indistinguishable.

Simulator

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$
MSK
Master KeyGen
MSK ${ }^{S}$

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$
MSK
Master KeyGen
MSK ${ }^{\text {s }}$

Constraint query C

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$
MSK
Master KeyGen
MSK ${ }^{\text {s }}$
Cons(MSK, C) -> K[C]
Constraint query C

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$
MSK
Master KeyGen
MSK ${ }^{\text {s }}$
Cons(MSK, C) -> K[C] Constraint query C
Input query x

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

MSK
Cons(MSK, C) -> K[C] Constraint query C
$\operatorname{Eval}(\mathrm{MSK}, \mathrm{x})->\mathrm{F}_{\mathrm{K}}(\mathrm{x})$

Master KeyGen
Constraint query C Input query x

Simulator

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

MSK
Cons(MSK, C) -> K[C]
Constraint query C Input query x

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(\mathrm{MSK}, \mathrm{x})->\mathrm{F}_{\mathrm{K}}(\mathrm{x})$

Master KeyGen
Constraint query C Input query x

$K^{s}<-\operatorname{Sim}\left(\right.$ MSK $\left.^{s}, 1^{|C|}\right)$
$y^{S}<-\operatorname{Sim}\left(M S K^{S}, x, C(x)\right)$

Simulator

Simulation-based definition of CHCPRF

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.

MSK
Cons(MSK, C) -> K[C]
Eval(MSK, $x)$-> $F_{K}(x)$

Master KeyGen
Constraint query C
$K^{S}<-\operatorname{Sim}\left(\mathrm{MSK}^{S}, 1^{\mid \mathrm{Cl}}\right)$ Input query x $y^{S}<-\operatorname{Sim}\left(M S K^{S}, x, C(x)\right)$

Simulator

Simulation-based definition of CHCPRF

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.
Pseudorandom \& Constraint-hiding:

$$
\begin{array}{cr}
\mathrm{K}[\mathrm{C}], \mathrm{F}_{\mathrm{K}}(\mathrm{x}) \approx_{\mathrm{c}} \mathrm{~K}^{\mathrm{S}}, \mathrm{y}^{\mathrm{S}} \quad \text { (when } \mathrm{C}(\mathrm{x})=0, \mathrm{y}^{\mathrm{s}} \text { is from ran } \\
\text { Master KeyGen }
\end{array}
$$

Cons(MSK, C) -> K[C] Constraint query C $\quad K^{S}<-\operatorname{Sim}\left(\mathrm{MSK}^{S}, 1^{|C|}\right)$
Eval(MSK, x) -> $F_{K}(x) \quad$ Input query $x \quad y^{S}<-\operatorname{Sim}\left(\right.$ MSK $\left.^{S}, x, C(x)\right)$

Simulator

Simulation-based definition of CHCPRF

Theorem [CC17]
For 1-constrained key in the selective setting sim-based = ind-based

Sim-based definition for many constrained keys

Simulator

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.
Constraint-hiding:

$$
\mathrm{K}\left[\mathrm{C}_{1}\right], \mathrm{K}\left[\mathrm{C}_{2}\right] \approx_{\mathrm{c}} \mathrm{~K}_{1}^{\mathrm{S}}, \mathrm{~K}_{2}^{\mathrm{S}}
$$

MSK

Cons(MSK, C_{1}) -> K[C $\left.\mathrm{C}_{1}\right] \quad$ Constraint query C_{1}
$\mathrm{K}_{1}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{\mid \mathrm{Cl}}\right)$
Cons(MSK, $\left.\mathrm{C}_{2}\right)->\mathrm{K}\left[\mathrm{C}_{2}\right] \quad$ Constraint query $\mathrm{C}_{2} \quad \mathrm{~K}_{2}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{\mid \mathrm{Cl}}\right)$

Sim-based definition for many keys

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.
Constraint-hiding:

$$
\mathrm{K}\left[\mathrm{C}_{1}\right], \mathrm{K}\left[\mathrm{C}_{2}\right] \approx_{\mathrm{c}} \mathrm{~K}_{1}^{\mathrm{S}}, \mathrm{~K}_{2}^{\mathrm{S}}
$$

MSK

Master KeyGen
MSK ${ }^{S}$
Cons(MSK, $\left.\mathrm{C}_{1}\right)$-> K[C. $] \quad$ Constraint query $\mathrm{C}_{1} \quad \mathrm{~K}_{1}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{\mid \mathrm{Cl}}\right)$ Cons(MSK, $\left.\mathrm{C}_{2}\right)$-> $\mathrm{K}\left[\mathrm{C}_{2}\right] \quad$ Constraint query $\mathrm{C}_{2} \quad \mathrm{~K}_{2}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{\mid \mathrm{Cl\mid}}\right)$

Simulator
Relaxed Sim-based definition for many keys

Theorem [CC 17]: Two-key CHCPRF (for function class C) implies obfuscation (for C)

- Two-key relaxed sim-CHCPRF implies strong VBB obfuscation
- Two-key ind-CHCPRF implies iO

Obfuscation

Theorem [CC 17]: Two-key CHCPRF (for function class C) implies obfuscation (for C)

- Two-key relaxed sim-CHCPRF implies strong VBB obfuscation
- Two-key ind-CHCPRF implies iO

Construction:

Obf $=(\mathrm{K}[\mathrm{C}], \mathrm{K}[\mathrm{Z}])$

Eval(x): check consistency Eval($\mathrm{K}[\mathrm{C}], x)=$? Eval($\mathrm{K}[\mathrm{Z}], x)$

Idea implicit from the [GGHRSW13] candidate obfuscation

In the rest of the talk, we will focus on:

1-key simulation-based definition for CHCPRF.

Theorem [CC 17] 1-key sim-based CHCPRF implies 1-key private-key functional encryption (reusable garbled circuits).

Theorem [CC 17] 1-key sim-based CHCPRF implies 1-key private-key functional encryption (reusable garbled circuits).

Construction: from normal encryption Sym and CHCPRF E
$\operatorname{Enc}(\mathrm{m} ; \mathrm{r}): \quad \mathrm{ct}=\mathrm{Enc}_{\text {sym. }}(\mathrm{m} ; \mathrm{r}) ; \quad \operatorname{tag}=\mathrm{F}[\mathrm{K}](\mathrm{ct})$
FSK[Sym.K, F.K, C]: constrained key for the "decryption and eval" functionality $\mathrm{C}\left(\operatorname{Dec}_{\text {sym.K }}().\right)$
Eval: compute $\mathrm{F}\left[\mathrm{C}\left(\operatorname{Dec}_{\text {sym. }}(\mathrm{F})\right)\right](\mathrm{ct})$, and compare with tag

Main construction:

1-key sim-based CHCPRFs for NC1 from Learning With Errors, based on the multilinear maps by Gentry, Gorbunov, Halevi (GGH15)

Combine:

- Lattices-based PRFs
- Barrington's theorem to embed functionality
- GGH15 encoding to provide a public constrained mode

Demonstrate a proof methodology of GGH15-based applications.

Short intro to BPR12 [Banerjee, Peikert, Rosen 12] -- the first LWE-based PRF

A is $n-$ by $-m$ in $Z_{q}(n$ is the lattice dimension, $m>n \log q$) Search LWE: Given A, y=sA+E, find s Decisional LWE: distinguish y from random As hard as worst-case approx-SIVP (Quantumly) [Regev 05] (classically for subexponential q) [Peikert 09, BLPRS 13]

A is $n-$ by $-m$ in $Z_{q}(n$ is the lattice dimension, $m>n \log q$) Search LWE: Given A, y=sA+E, find s Decisional LWE: distinguish y from random As hard as worst-case approx-SIVP (Quantumly) [Regev 05] (classically for subexponential q) [Peikert 09, BLPRS 13]

Entries of S are small (e.g. from the error distribution) As hard as normal LWE [Applebaum, Cash, Peikert, Sahai 09]

Banerjee, Peikert, Rosen '12

Subset-product \& rounding

Eval: $\quad F(x)=\left\{\prod \mathrm{s}_{\mathrm{i}, \mathrm{xi}} \mathrm{A}\right\}_{2}$
$\mathrm{S}_{\mathrm{i}, \mathrm{b}}$ are LWE secrets from low-norm distributions

Rounding: $\{t\}_{p}: Z_{q}->Z_{p}$
Compute t*p/q, then round to the nearest integer

In this talk, $p=2, q / p>\exp (L), q / p \sim$ super-polynomial

Amount of noise

A is public, $S_{i, x i}$ are secret

$$
F(x)=\left\{\prod s_{i, x i} A\right\}_{2}
$$

Main observation: After rounding, can inject noises without changing functionality whp.

Banerjee, Peikert, Rosen 12 Proof of pseudorandomness

Uniform Small Unspecified

A is public, $S_{i, x i}$ are secret

F(0110)
$=\left\{\mathrm{s}_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,0} \mathrm{~A}\right\}_{2}$

Banerjee, Peikert, Rosen 12 Proof of pseudorandomness

Uniform Small Unspecified

A is public, $S_{i, x i}$ are secret

F(0110)
$F(x)=\left\{\prod s_{i, x i} A\right\}_{2}$
$=\left\{s_{1,0} s_{2,1} s_{3,1} s_{4,0} A\right\}_{2}$
$\approx_{s}\left\{s_{1,0} s_{2,1} s_{3,1}\left(s_{4,0} A+E_{4,0}\right)\right\}_{2}$

Banerjee, Peikert, Rosen 12 Proof of pseudorandomness

Uniform Small Unspecified

A is public, $S_{i, x i}$ are secret

F(0110)
$=\left\{\mathrm{s}_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,0} \mathrm{~A}\right\}_{2}$
$\approx_{s}\left\{s_{1,0} s_{2,1} s_{3,1}\left(s_{4,0} A+E_{4,0}\right)\right\}_{2}$
$\approx_{c}\left\{\mathrm{~s}_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{Y}_{* * *}\right\}_{2}$

Banerjee, Peikert, Rosen 12 Proof of pseudorandomness

Uniform Small Unspecified

A is public, $S_{i, x i}$ are secret

F(0110)
$F(x)=\left\{\prod s_{i, x i} A\right\}_{2}$
$=\left\{\mathrm{s}_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,0} \mathrm{~A}\right\}_{2}$
$\approx\left\{s_{1,0} s_{2,1} s_{3,1}\left(s_{4,0} A+E\right)\right\}$
$\approx_{c}\left\{\mathrm{~s}_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{Y}_{* * * 0}\right\}_{2}$
$\approx_{\mathrm{s}}\left\{\mathrm{s}_{1,0} \mathrm{~s}_{2,1}\left(\mathrm{~s}_{3,1} \mathrm{Y}_{* * * 0}+\mathrm{E}_{3,1}\right)\right\}_{2}$

Banerjee, Peikert, Rosen 12 Proof of pseudorandomness

Uniform Small Unspecified

A is public, $S_{i, x i}$ are secret

$\mathrm{S}_{1,1}$	$\mathrm{~S}_{2,1}$	$\mathrm{~S}_{3,1}$	$\boxed{S_{4,1}}$
$\mathrm{~S}_{1,0}$	$\mathrm{~S}_{2,0}$	$\mathrm{~S}_{3,0}$	$\mathrm{~S}_{4,0}$
	A	$\operatorname{mod~q}$	

F(0110)
$=\left\{\mathrm{s}_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,0} \mathrm{~A}\right\}_{2}$
$\approx_{s}\left\{s_{1,0} s_{2,1} s_{3,1}\left(s_{4,0} A+E_{4,0}\right)\right\}_{2}$
$\approx_{c}\left\{\mathrm{~s}_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{Y}_{* * * 0}\right\}_{2}$
$\approx_{s}\left\{\mathrm{~s}_{1,0} \mathrm{~s}_{2,1}\left(\mathrm{~s}_{3,1} \mathrm{Y}_{* * *}+\mathrm{E}_{3,1}\right)\right\}_{2}$
$\approx_{c}\left\{\mathrm{~s}_{1,0} \mathrm{~s}_{2,1} \mathrm{Y}_{* * 10}\right\}_{2}$
$\approx \ldots \approx\left\{Y_{0110}\right\}_{2}$

Banerjee, Peikert, Rosen '12 Subset-product \& rounding

Eval: $\quad \mathrm{F}(\mathrm{x})=\left\{\prod_{\mathrm{i}, \mathrm{xi}} \mathrm{A}\right\}_{2}$
What we need in addition to build a CHCPRF:

+ Embed structures in the secret terms to perform functionality (Barrington's theorem)
+ A proper public mode of the function (GGH15 encoding)

Barrington's theorem

(used to embed a circuit into the key)

Barrington 1986: log-depth boolean circuits can be recognized by subset products of permutation matrices of width 5 .

Example: how to represent an AND gate

Barrington 1986: log-depth boolean circuits can be recognized by subset products of permutation matrices of width 5 .

Example: how to represent an AND gate 0 and 0

1

0

Input wire 1

Input wire 2

Input wire 1

Input wire 2

Barrington 1986: log-depth boolean circuits can be recognized by subset products of permutation matrices of width 5 .

Example: how to represent an AND gate 0 and 1

1

Input wire 1

Input wire 2

Input wire 1

图
Our construction only work for certain representation of Barrington (e.g. S_{5})

Barrington 1986: log-depth boolean circuits can be recognized by subset products of permutation matrices of width 5 .

Example: how to represent an AND gate 1 and 0

1

Input wire 2

Input wire 1
0

Input wire 2

Barrington 1986: log-depth boolean circuits can be recognized by subset products of permutation matrices of width 5 .

Example: how to represent an AND gate 1 and $1 \quad P P^{-1} Q^{-1}=C \neq I$

0

Input wire 1 Input wire 2

Input wire 1
Input wire 2
Our construction only work for certain representation of Barrington (e.g. S_{5})

Representation of the constraint predicate: branching program

$$
\begin{array}{lllll}
1 & B_{1,1} & B_{2,1} & B_{3,1} \ldots B_{L, 1} \\
0 & B_{1,0} & B_{2,0} & B_{3,0} \ldots & B_{L, 0}
\end{array} \quad \text { Eval: } \quad \prod_{z(i), x_{-} z(i)}=I \text { or } C
$$

Steps $123 \ldots$ L

We set the secrets like:

Representation of secrets (to be encoded by GGH15): $\mathrm{B}_{\mathrm{i}, \mathrm{b}}{ }^{\otimes} \mathrm{S}_{\mathrm{i}, \mathrm{b}}$

$$
\text { e.g. } I \otimes s=
$$

s				
	s			
		s		
			s	
				s

$\mathrm{P} \otimes \mathrm{s}=$| | | | | S |
| :--- | :--- | :--- | :--- | :--- |
| S | | | | |
| | S | | | |
| | | | | |
| | | S | | |
| | | | s | |

GGH15 encoding

[Gentry, Gorbunov, Halevi 15]

GGH15 "graph-induced multilinear maps"

Multilinear maps perspective:

$$
g, g^{S_{1}}, \ldots g^{S_{k}}, g \Pi S \quad A, S_{1} A+E_{1^{\prime}}, \ldots, S_{k} A+E_{k^{\prime}} \Pi S A+E
$$

GGH15: (Ring)LWE analogy

The "plaintexts" are encoded in the secret terms of LWE

Trapdoor

Trapdoor [Ajtai 99, Alwen, Peikert 09, Micciancio, Peikert 12] Can sample A with a trapdoor T.

Can sample small preimage from Gaussian [Klein '00, GPV'08]

GGH15 encoding for the $i^{\text {th }}$ hop:

GGH15 encoding for the $i^{\text {th }}$ hop:

$$
Y_{i, 1}=s_{i, 1} A_{i+1}+E_{i, 1}
$$

$$
Y_{i, 0}=s_{i, 0} A_{i+1}+E_{i, 0}
$$

Encode $\left(s_{i, b}\right): 2$ steps

1. $Y_{i, b}=s_{i, b} A_{i+1}+E_{i, b}$

GGH15 encoding for the $i^{\text {th }}$ hop:

Encode $\left(s_{i, b}\right): 2$ steps

1. $Y_{i, b}=s_{i, b} A_{i+1}+E_{i, b}$
2. Sample (by the trapdoor of A_{i}) small $D_{i, b}$ s.t. $A_{i} D_{i, b}=Y_{i, b}$

GGH15 for L hops:

GGH15 for L hops:

$\operatorname{Encode}\left(s_{\mathrm{i}, \mathrm{b}}\right): 2$ steps

GGH15 for L hops:

GGH15 for L hops:
Encode($\left.s_{i, b}\right): 2$ steps

$$
Y_{L, 0}=s_{L, 0} A_{L+1}+E_{L, 0}
$$

1. $Y_{i, b}=s_{i, b} A_{i+1}+E_{i, b}$
2. Sample (by the trapdoor of A_{i}) small $D_{i, b}$ s.t. $A_{i} D_{i, b}=Y_{i, b}$ Let $D_{i, b}$ be Encoding $\left(s_{i, b}\right)$

GGH15 for L hops:

Review: What are public

Understanding the functionality of GGH15

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$

Evaluation of GGH15 (prove by example):

Eval(0110)

$$
\begin{aligned}
& =A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0} \\
& =\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0} \\
& =s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+\text { "small" }
\end{aligned}
$$

Evaluation of GGH15 (prove by example):

Eval(0110)

+ "small"
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"
$=s_{1,0} s_{2,1} A_{3} D_{3,1} D_{4,0}+$ "still small"

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"
$=s_{1,0} S_{2,1} A_{3} D_{3,1} D_{4,0}+$ "still small"
$=s_{1,0} S_{2,1} S_{3,1} A_{4} D_{4,0}+$ "still smallish"

Evaluation of GGH15 (prove by example):

$\mathrm{S}_{1,1}$	$\mathrm{~S}_{2,1}$	$\mathrm{~S}_{3,1}$	$\mathrm{~S}_{4,1}$
$\mathrm{~S}_{1,0}$	$\mathrm{~S}_{2,0}$	$\mathrm{~S}_{3,0}$	$\mathrm{~S}_{4,0}$

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"
$=s_{1,0} S_{2,1} A_{3} D_{3,1} D_{4,0}+$ "still small"
$=s_{1,0} S_{2,1} S_{3,1} A_{4} D_{4,0}+$ "still smallish"
$=s_{1,0} S_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,0} \mathrm{~A}_{5}+{ }^{\text {"small" }}$

Evaluation of GGH15 (prove by example):

CHCPRF for NC1 constraint

NC1-CHCPRF from GGH15

Master public key: $A_{1} \ldots A_{L+1}(L=\#$ steps in BP)
Master secret key: trapdoors of $A_{1} \ldots A_{L^{\prime}} S_{1,0}, s_{1,1^{\prime}} \ldots, S_{L, 0^{\prime}} S_{L, 1^{\prime}} \& J$

NC1-CHCPRF from GGH15

Master public key: $A_{1} \ldots A_{L+1}(L=\#$ steps in BP) Master secret key: trapdoors of $A_{1} \ldots A_{L^{\prime}} S_{1,0}, s_{1,1^{\prime}} \ldots, S_{L, 0^{\prime}} S_{L, 1^{\prime}}$ \& J Constrained key gen: let $\mathrm{S}_{\mathrm{i}, \mathrm{b}}:=\mathrm{B}_{\mathrm{i}, \mathrm{b}} \otimes \mathrm{S}_{\mathrm{i}, \mathrm{b}^{\prime}}$ sample GGH 15 encodings for $\mathrm{S}_{\mathrm{i}, \mathrm{b}}$ Eval: $F(x)=\left\{J A_{1} \prod D_{i, x_{2}(i)}\right\}_{2}$ (z: [L]->[n] is the step-to-input mapping)

Constrained key:

NC1-CHCPRF from GGH15

Master public key: $A_{1} \ldots A_{L+1}(L=\#$ steps in BP)
Master secret key: trapdoors of $A_{1} \ldots A_{L^{\prime}} S_{1,0}, s_{1,1^{\prime}} \ldots, S_{L, 0^{\prime}} S_{L, 1^{\prime}} \& J$
Constrained key gen: let $\mathrm{S}_{\mathrm{i}, \mathrm{b}}:=\mathrm{B}_{\mathrm{i}, \mathrm{b}} \otimes \mathrm{S}_{\mathrm{i}, \mathrm{b}}$, sample GGH 15 encodings for $\mathrm{S}_{\mathrm{i}, \mathrm{b}}$
Eval: $F(x)=\left\{J A_{1} \prod D_{i, x_{2}(i)}\right\}_{2}$ (z: [L]->[n] is the step-to-input mapping)

Functionality check:
when $C(x)=1$,

when $C(x)=0$,

NC1-CHCPRF from GGH15 *

Compare to GGM

NC1-CHCPRF from GGH15 *

Compare to GGM

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

Uniform Small Unspecified $\mathrm{s}_{\mathrm{i}, \mathrm{xi}}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{xi}}$ are public

What are we trying to simulate?

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

Uniform Small Unspecified $\mathrm{s}_{\mathrm{i}, \mathrm{x},}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are public

$$
\left\{\mathrm{I} \otimes\left(\mathrm{~s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}
$$

Proof by example with 1 input query

NC1-CHCPRF from GGH15 *

Uniform Small Unspecified
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$ $\mathrm{s}_{\mathrm{i}, \mathrm{x}}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are public

$\operatorname{Eval}(11)=\left\{\mathrm{I} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}$

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$ $\mathrm{s}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{xi}}$ are public
 $Y_{4,0}=\left(\mathrm{I}_{\otimes} \mathrm{S}_{4,0}\right) \mathrm{A}_{4}+\mathrm{E}_{4,0}$
$\operatorname{Eval}(11)=\left\{\mathrm{I} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}$

$$
\approx_{s}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right)\left(\left(Q^{-1} \otimes S_{4,1}\right) A_{5}+E_{4,1}\right)\right\}_{2}
$$

NC1-CHCPRF from GGH15 *

Uniform Small Unspecified $\mathrm{s}_{\mathrm{i}, \mathrm{x},}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are public

$\operatorname{Eval}(11)=\left\{\mathrm{I} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}$

$$
\approx_{\mathrm{s}}\left\{\left(\mathrm{Q}^{\otimes}\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1}\right)\right) \mathrm{U}_{4,1}\right\}_{2}
$$

Perm-LWE

Uniform Small Unspecified $\mathrm{s}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are secret, $\quad \mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are public

$\operatorname{Eval}(11)=\left\{\mathrm{I} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}$

$$
\begin{aligned}
& \approx_{s}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right)\left(\left(Q^{-1} \otimes s_{4,1}\right) A_{5}+E_{4,1}\right)\right\}_{2} \\
& \approx_{c}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right) A_{4} D_{4,1}\right\}_{2}
\end{aligned}
$$

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

Uniform Small Unspecified $\mathrm{s}_{\mathrm{i}, \mathrm{x}}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are public

$\operatorname{Eval}(11)=\left\{\mathrm{I} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}$

$$
\begin{aligned}
& \approx_{s}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right)\left(\left(Q^{-1} \otimes s_{4,1}\right) A_{5}+E_{461}\right)\right\}_{2} \\
& \approx_{c}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right) A_{4} D_{4,1}\right\}_{2} \\
& \approx_{s}\left\{\left(Q P^{\otimes}\left(s_{1,1} s_{2,1}\right)\right)\left(\left(P^{-1} \otimes s_{3,1}\right) A_{4}+E_{3,1}\right) D_{4,1}\right\}_{2}
\end{aligned}
$$

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

Uniform Small Unspecified $\mathrm{s}_{\mathrm{i}, \mathrm{x},}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are public

$D_{4,1}$

$\operatorname{Eval}(11)=\left\{\mathrm{I} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}$

$$
\begin{aligned}
& \approx_{s}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right)\left(\left(Q^{-1} \otimes s_{4,1}\right) A_{5}+E_{4,1}\right)\right\}_{2} \\
& \approx_{c}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right) A_{4} D_{4,1}\right\}_{2} \\
& \approx_{s}\left\{\left(Q P \otimes\left(s_{1,1} s_{2,1}\right)\right)\left(\left(P^{-1} \otimes s_{3,1}\right) A_{4}+E_{3,1}\right) D_{4,1}\right\}_{2} \\
& \approx_{c}\left\{\left(Q P \otimes\left(s_{1,1} s_{2,1}\right)\right) A_{3} D_{3,1} D_{4,1}\right\}_{2}
\end{aligned}
$$

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

$\operatorname{Eval}(11)=\left\{\mathrm{I} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,1}\right) \mathrm{A}_{5}\right\}_{2}$

$$
\begin{aligned}
& \approx_{s}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right)\left(\left(Q^{-1} \otimes s_{4,1}\right) A_{5}+E_{4,1}\right)\right\}_{2} \\
& \approx_{c}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right) A_{4} D_{4,1}\right\}_{2} \\
& \approx_{s}\left\{\left(Q P P^{\otimes}\left(s_{1,1} s_{2,1}\right)\right)\left(\left(P^{-1} \otimes s_{3,1}\right) A_{4}+E_{3,1}\right) D_{4,1}\right\}_{2} \\
& \approx_{c}\left\{\left(Q P \otimes\left(\mathrm{~s}_{1,1} s_{2,1}\right)\right) A_{3} D_{3,1} D_{4,1}\right\}_{2} \\
& \approx_{c} \ldots \approx_{c}\left\{C^{-1} A_{1} \prod D_{z(x), x-z(x)}\right\}_{2}
\end{aligned}
$$

CK done, pseudorandomness of the output still not

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

$\operatorname{Eval}(11)=\left\{I \otimes\left(s_{1,1} s_{2,1} s_{3,1} s_{4,1}\right) A_{5}\right\}_{2}$
$\approx_{s}\left\{\left(Q \otimes\left(s_{1,1} s_{2,1} s_{3,1}\right)\right)\left(\left(Q^{-1} \otimes s_{4,1}\right) A_{5}+E_{4,1}\right)\right\}_{2}$
$\approx_{c}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right) A_{4} D_{4,1}\right\}_{2}$
$\approx_{s}\left\{\left(Q P \otimes\left(s_{1,1} s_{2,1}\right)\right)\left(\left(P^{-1} \otimes S_{3,1}\right) A_{4}+E_{3,1}\right) D_{4,1}\right\}_{2}$
$\approx_{c}\left\{\left(\mathrm{QP} \otimes\left(\mathrm{s}_{1,1} \mathrm{~s}_{2,1}\right)\right) \mathrm{A}_{3} \mathrm{D}_{3,1} \mathrm{D}_{4,1}\right\}_{2}$
$\approx_{c} \ldots \approx_{c}\left\{\mathrm{C}^{-1} \mathrm{~A}_{1} \Pi \mathrm{D}_{z(x), x_{-}(x)}\right\}_{2}$

Current status:

- CK \checkmark
- randomness of the outputs
cont.

Uniform Small Unspecified $\mathrm{s}_{\mathrm{i}, \mathrm{x}}$ are secret, $\mathrm{A}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}, \mathrm{x} \mathrm{i}}$ are public
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

$\operatorname{Eval}(11)=\left\{I \otimes\left(s_{1,1} s_{2,1} s_{3,1} s_{4,1}\right) A_{5}\right\}_{2}$
$\approx_{s}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right)\left(\left(Q^{-1 \otimes s_{4,1}}\right) A_{5}+E_{4,1}\right)\right\}_{2}$
$\approx_{c}\left\{\left(Q^{\otimes}\left(s_{1,1} s_{2,1} s_{3,1}\right)\right) A_{4} D_{4,1}\right\}_{2}$
$\approx_{s}\left\{\left(Q P \otimes\left(s_{1,1} s_{2,1}\right)\right)\left(\left(P^{-1} \otimes \mathrm{~S}_{3,1}\right) A_{4}+E_{3,1}\right) D_{4,1}\right\}_{2}$
$\approx_{c}\left\{\left(Q P \otimes\left(s_{1,1} s_{2,1}\right)\right) A_{3} D_{3,1} D_{4,1}\right\}_{2}$
$\approx_{c} \ldots \approx_{c}\left\{\mathrm{JC}^{-1} \mathrm{~A}_{1} \Pi \mathrm{D}_{z(x), x_{-}(x)}\right\}_{2}$

Current status:

- CK \checkmark
- randomness of the outputs
Solution:
Multiply a random vector J on the left
cont.

Simulator

Summary: NC1 CHCPRF from GGH15

- Constraint hiding: Perm-LWE + GPV
- Outputs: need additional protection J, justified by JLWE

Concurrent work:
Boneh, Kim, Montgomery (Eurocrypt 17)

1-key puncturable CHCPRFs from LWE.

Both root from previous lattices-based PRFs, but different method to constrain and hide.

Genealogy of Lattices-based PRFs

[BPR12] -- the settler
[BLMR13] -- key homomorphic
*[BP14] -- better key homomorphic, embed a tree
*[BFPPS15] -- [BP14] is puncturable
*[BV15] -- embed a circuit, constrained for P
*[BKM17] -- puncture privately, built from [BV15]
[CC17] -- constrained privately for NC1, influenced by GGH15 mmaps

* uses gadget matrix G, adapted from the lattices-based FHE, ABE, PE

Q: Is there a transformation between Dual-Regev-based homomorphic schemes and GGH15-based ones?
p.s. Hoeteck asked me if there's an interpretation of [GVW13] ABE from [GGH15]. I thought for a little bit, not obvious.

More questions of GGH15

Q: What safe modes do we have confidence for GGH15?
A: With limited number/restricted form of zeros, very likely.
Q: What is weird about GGH15 (as a useful mmaps)?
A: Must prove from 1 direction (namely make sure that the trapdoor sampling is safe, from sink to source), not a desirable property of mmaps.

Q: Anything to say when the A matrices are hidden?
A: There must be something to say ... a question worth to understand

The end

