Hard Problems on Isogeny Graphs over RSA Moduli and Groups with Infeasible Inversion

Salim Ali Altuğ

BOSTON UNIVERSITY

ASIACRYPT 2019 Kobe, Japan

Yilei Chen

Number Theory is a beautiful garden Carl Ludwig Siegel

Slides from a talk of Miller, available at http://2010.eccworkshop.org/slides/Miller.pdf

Number Theory is a beautiful garden – Carl Ludwig Siegel

Slides from a talk of Miller, available at http://2010.eccworkshop.org/slides/Miller.pdf

en Oil was discovered in the garden. – Hendrik W. Lenstra, Jr.

A volcano was discovered in the garden!

- Kohel 1996

Today: A group with infeasible inversion was found in the volcano!

What is a group with infeasible inversion?

Hohenberger and Molnar (2003) propose groups with infeasible inversion Inversion is hard: given [x], compute [-x] is hard. <u>Composition is easy:</u> given [x], [y], compute [x+y] is easy. Application: Directed transitive signature. Another application: Broadcast encryption [Irrer et al. 04].

A non-example: over a finite field F_q : [a] = $g^a \mod q$

They did not find out any group (representation) that satisfies this property.

- given g, g^a, finding a is hard, but computing g^{-a} is simple.

Attempts of constructing groups with infeasible inversion?

- Attempt 1: Let G be the multiplicative group "in the exponent":
 - given g, g^a , compute $g^{1/a}$ is hard in many groups.
 - But ... multiplication in the exponent is also hard, cannot compose.

- Attempt 2: obfuscate the exponentiation function: Yes [Yamakawa et al. 14]

Still, no candidate GII was known without using general purpose obfuscation.

encoding(a) = { g^a , Obf{a,N}(x) = $x^{2a} \mod N$ }

Today: Groups with infeasible inversion from hard problems on elliptic curve isogeny graphs defined over RSA moduli

Road map

- 1. Elliptic curve isogenies can be represented by graphs like volcanoes.
- 2. Isogeny graphs can be used to represent a group.
- 3. Over finite fields, searching for close neighbors on the graph is easy.
- 4. Over an RSA modulus N, finding certain neighbors is hard.
- 5. Hardness of finding certain neighbors = hardness of inverting group elements.

$E(F_q) = \{ (x, y) | y^2 = x^3 + ax + b \text{ over } F_q \} \cup \{ O \}$

j-invariant of a curve: $j = 1728 \cdot 4a^{3}/(4a^{3}+27b^{2})$ Over C, curves with the same j-invariant are isomorphic; Over F_q they are isomorphic, or the twist of each other. In this talk let us treat curves with the same j-invariant as the same.

Isogenous is an interesting equivalence relation between elliptic curves.

"A morphism ϕ from E₁ to E₂ is called an isogeny if it maps O on E₁ to O on E₂."

Isogenous is an interesting equivalence relation between elliptic curves.

[Tate 1966] Two elliptic curves E₁ and E₂ over a finite field F_q are isogenous iff they have the same number of points.

- "A morphism ϕ from E₁ to E₂ is called an isogeny if it maps O on E₁ to O on E₂."

Isogenous is an interesting equivalence relation between elliptic curves.

[Tate 1966] Two elliptic curves E_1 and E_2 over a finite field F_q are isogenous iff they have the same number of points. [Hasse 1933] The number of the points on $E(F_q)$: $[q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}]$ [Schoof 1985] given a, b and q, compute $\#E(F_q)$ in time poly(log q).

- "A morphism ϕ from E₁ to E₂ is called an isogeny if it maps O on E₁ to O on E₂."

Isogenous is an interesting equivalence relation between elliptic curves.

[Tate 1966] Two elliptic curves E_1 and E_2 over a finite field F_q are isogenous iff they have the same number of points.

- [Hasse 1933] The number of the points on E(F_q): $[q + 1 2\sqrt{q}, q + 1 + 2\sqrt{q}]$ [Schoof 1985] given a, b and q, compute $\#E(F_q)$ in time poly(log q).
- An isogeny ϕ : E₁ -> E₂ can be explicitly written as a rational polynomial.
 - φ: (x, y) -> (f(x)/h²(x), g(x, y)/h³(x)),

The degree of an isogeny ϕ is the degree of the rational polynomial.

- "A morphism ϕ from E₁ to E₂ is called an isogeny if it maps O on E₁ to O on E₂."

Volcano ahead!

Relation among isogenous curves — isogeny graph

Left: fix a degree L Right: the crater with multiple degrees

Isogeny graph: each vertex is an elliptic curve; each edge is an isogeny. The graph structure is described in the PhD Thesis of Kohel (1996).

The term "isogeny volcano" is introduced in [Fouquet, Morain 02].

 $-\ell$ -isogenies

--m-isogenies

Representing the ideal class group

Left: fix a degree L Right: the crater with multiple degrees

The ideal class group CL(O) acts faithfully and transitively on the set $Ell_{O}(F_{q}) = \{ j(E) : E with End(E) = O \}; \# |Ell_{O}(F_{q})| = O(\sqrt{q}) \}$

Faithful: no group elements g (except the identity) satisfies g * x = x for all x in Ell₀(Fq).

Transitive: for all x, y in $Ell_{O}(Fq)$, there is a g in CL(O) satisfies g * x = y.

Example: a connecting component over F_{83} , degree L = 3.

Representing the class group G = CL(D), with D = -251, #|G| = 7Let j₀ represent the identity of G. Let j_1 represents an element a of norm 3 in G (i.e. $a \in E_1$), then i_6 represents -a (i.e. $-a * E_0 = E_6$)

Road map

- 1. Elliptic curve isogenies can be represented by a graph.
- 2. Isogeny graphs can be used to represent a group.
- 3. Over finite fields, searching for close neighbors on the graph is easy.
- 4. Over an RSA modulus N, finding certain neighbors is hard.
- 5. Hardness of finding certain neighbors = hardness of inverting group elements

Computational problems for isogeny over a finite field

Q1: Fix a polynomially large degree L, given a curve E_0 , is there a polynomial time algorithm that finds all of its L-isogenous neighbors?

Computational problems for isogeny over a finite field

algorithm that finds all of its L-isogenous neighbors? Answer: Yes. There are two ways.

(1) Use Velu's formulae (2) Find (the j invariant of) **E1** by solving modular polynomials,

Q1: Fix a polynomially large degree L, given a curve E_0 , is there a polynomial time

Modular polynomials

related by an L-cyclic isogeny:

 $\Psi_{L}(j_1, j_2) = 0$ if j_1 and j_2 are the j-invariants of L-isogenous elliptic curves.

 $\Psi_{L}(x, y)$ has integer coefficients. Has degree L+1 for prime L. In theory, Ψ_{L} is computable in polynomial time in L. In practice, the coefficients are very large.

For all L>0, the L-th modular polynomial Ψ_{L} parameterizes pairs of elliptic curves

 $j_1 = 48$ $j_2 = 23$ $j_0 = 15$ $j_6 = 71$ \mathbb{F}_{83} $j_3 = 29$ $j_5 = 55^{j_4} = 34$

Computational problems for isogeny over a finite field

- Q2: Randomly select two curves E_1 and E_2 from the graph, find an explicit isogeny between them.
- Current status: conjectured to be hard, even for quantum computers.
- [Couveignes 97], [Rostovtsev, Stolbunov 06]: post-quantum key-exchange
- SIDH [De Feo, Jao 11]
- CSIDH [Castryck, Lange, Martindale, Panny, Renes 18]

Road map

- 1. Elliptic curve isogenies can be represented by a graph.
- 2. Isogeny graphs can be used to represent a group.
- Over finite fields, searching for close neighbors on the graph is easy.
- 4. Over an RSA modulus N, finding certain neighbors is hard.
- 5. Hardness of finding certain neighbors = hardness of inverting group elements

How to define an isogeny graph mod N:

- 1. The general case: j_1 , j_2 are connected if $\Psi_{L}(j_1, j_2) = 0 \mod N$.
- 2. The special case: Assume the isogeny volcanoes over F_p and F_q have the same structure, then fix j_0 and a direction, take CRT.
- Example: Representing G = CL(-251),

is there a polynomial time algorithm that finds its L-isogenous neighbors?

Current status: seems to be hard.

- <u>Basic neighbor search</u>: Fix a poly degree L, given a curve E₀ (its j-invariant mod N),

is there a polynomial time algorithm that finds its L-isogenous neighbors?

Current status: seems to be hard.

The two methods over the finite field don't work.

Since they both require solving high degree polynomial mod N!

Basic neighbor search: Fix a poly degree L, given a curve E₀ (its j-invariant mod N),

that is L-isogenous to E_0 , and L^2 -isogenous to E_1 ?

Current status: also seems to be hard.

Natural attempt: take the gcd of $\Psi_{L}(j_0, x)$ and $\Psi_{L^2}(j_1, x)$, but the resulting polynomial has degree L, not 1.

Joint-neighbor-search problem: Fix a degree L, given two curves E₀, E₁, find E₂

that is L-isogenous to E_0 , and L^2 -isogenous to E_1 ?

Current status: also seems to be hard.

Joint-neighbor-search problem: Fix a degree L, given two curves E₀, E₁, find E₂

- But for *coprime* degree joint neighbors,
- gcd of $\Psi_{M}(j_1, x)$ and $\Psi_{L}(j_2, x)$ gives a linear function
- [Enge, Sutherland 10].

Road map

- 1. Elliptic curve isogenies can be represented by a graph.
- 2. Isogeny graphs can be used to represent a group.
- Over finite fields, searching for close neighbors on the graph is easy.
- 4. Over an RSA modulus N, finding certain neighbors is hard.
- 5. Hardness of finding certain neighbors = hardness of inverting group elements.

Trapdoor group with infeasible inversion

<u>Trapdoor: p, q, the discriminant D (which determines End(E₀)), invariants of CL(D)</u> <u>Public parameter: N = pq, $j_0 = j(E_0)$ </u> Encoding of an class group element a: <u>Canonical encoding of a: $j(E_a)$ such that $E_a = a * E_0$ </u> Composable encoding of a: factorize a into poly-smooth ideals, publish the canonical encoding and the norm of each of them. Infeasibility of inversion: (L, L²)-joint neighbor problem* Feasibility of composition*: when the norms of the ideals are *coprime*, then gcd of modular polys is linear.

The difficulties in generating the parameters efficiently

- Parameters: p, q, E₀ s.t. End(E₀/F_p) = End(E₀/F_q) = O of disc D. Want D to be exponentially large (so that CL(D) is exponentially large). Problem: how to find E₀, p, q, with a given exponentially large discriminant D. (The CM method only works when |D| is a polynomial, or <10¹⁴ in practice)
- Solution: Can let $D = (f_1 \dots f_k)^2 \cdot D_0$ s.t. all the factors are poly
- => the order of CL(D) is large but smooth, need to make sure the order is hidden.
- => Also need a short relation basis of CL(D).
 New Record: D with 154 digits [Beullens, Kleinjung, Vercauteren 19]

Cryptanalysis attempts (more: Section 5 of the paper)

The attacker sees:

We conjecture that the attacker cannot get:

- 1. p and q such that pq = N
- 2. The number of points of $E_0(Z_N)$
- 3. The discriminant D
- 4. The group size of CL(D)

- The modulus N, and a bunch of j-invariants of isogenous curves.

Summary:

We propose a candidate trapdoor group with infeasible inversion from elliptic curve isogeny (available on eprint 2018/926).

Main assumption: (L, L²)-neighbor search problem on the isogeny graphs defined over RSA moduli

Applications of GII: broadcast encryption, directed transitive signatures, maybe more...

Thanks for your time!

