Hard Problems on Isogeny Graphs over RSA Moduli

 and Groups with Infeasible InversionSalim Ali Altuğ

```
BOSTON
UNIVERSITY
```

Yilei Chen

VISA
 Research

ASIACRYPT 2019 Kobe, Japan

Number Theory is a beautiful garden

- Carl Ludwig Siegel

Slides from a talk of Miller, available at http://2010.eccworkshop.org/slides/Miller.pdf

Number Theory is a beautiful garden - Carl Ludwig Siegel

Oil was discovered in the garden. Hendrik W. Lenstra, Jr.

Slides from a talk of Miller, available at http://2010.eccworkshop.org/slides/Miller.pdf
 \section*{A volcano was discovered
 \section*{A volcano was discovered in the garden! in the garden!

 - Kohel 1996}

 - Kohel 1996}

$\operatorname{mon} \tan 2 x+\frac{1}{2}$
is : 0.96
4×5
 "rimes-o * 4
an

Today: A group with infeasible inversion was found in the volcano!

What is a group with infeasible inversion?

Hohenberger and Molnar (2003) propose groups with infeasible inversion Inversion is hard: given [x], compute [$-x$] is hard.

Composition is easy: given [x], [y], compute [$x+y$] is easy.
Application: Directed transitive signature.
Another application: Broadcast encryption [Irrer et al. 04].

They did not find out any group (representation) that satisfies this property.

A non-example: over a finite field $\mathrm{F}_{\mathrm{q}}:[\mathrm{a}]=\mathrm{g}^{\mathrm{a}} \bmod \mathrm{q}$
given $\mathrm{g}, \mathrm{g}^{\mathrm{a}}$, finding a is hard, but computing $\mathrm{g}^{-\mathrm{a}}$ is simple.

Attempts of constructing groups with infeasible inversion?

Attempt 1: Let G be the multiplicative group "in the exponent":

$$
\text { given } \mathrm{g}, \mathrm{~g}^{\mathrm{a}} \text {, compute } \mathrm{g}^{1 / a} \text { is hard in many groups. }
$$

But ... multiplication in the exponent is also hard, cannot compose.

Attempt 2: obfuscate the exponentiation function: Yes [Yamakawa et al. 14]

$$
\text { encoding }(a)=\left\{g^{a}, \quad \operatorname{Obf}\{a, N\}(x)=x^{2 a} \bmod N\right\}
$$

Still, no candidate Gll was known without using general purpose obfuscation.

Today: Groups with infeasible inversion from hard problems on elliptic curve isogeny graphs defined over RSA moduli

Road map

1. Elliptic curve isogenies can be represented by graphs like volcanoes.
2. Isogeny graphs can be used to represent a group.
3. Over finite fields, searching for close neighbors on the graph is easy.
4. Over an RSA modulus N , finding certain neighbors is hard.
5. Hardness of finding certain neighbors => hardness of inverting group elements.

Elliptic curve 101

$$
E\left(F_{q}\right)=\left\{(x, y) \mid y^{2}=x^{3}+a x+b \text { over } F_{q}\right\} \cup\{O\}
$$

j-invariant of a curve: $j=1728 \cdot 4 a^{3} /\left(4 a^{3}+27 b^{2}\right)$
Over C, curves with the same j-invariant are isomorphic;
Over F_{q} they are isomorphic, or the twist of each other.
In this talk let us treat curves with the same j-invariant as the same.

Elliptic curve isogeny

Isogenous is an interesting equivalence relation between elliptic curves.
"A morphism ϕ from E_{1} to E_{2} is called an isogeny if it maps O on E_{1} to O on E_{2}."

Elliptic curve isogeny

Isogenous is an interesting equivalence relation between elliptic curves.
"A morphism Φ from E_{1} to E_{2} is called an isogeny if it maps O on E_{1} to O on E_{2}."
[Tate 1966] Two elliptic curves E_{1} and E_{2} over a finite field F_{q} are isogenous iff they have the same number of points.

Elliptic curve isogeny

Isogenous is an interesting equivalence relation between elliptic curves.
"A morphism ϕ from E_{1} to E_{2} is called an isogeny if it maps O on E_{1} to O on E_{2}."
[Tate 1966] Two elliptic curves E_{1} and E_{2} over a finite field F_{q} are isogenous iff they have the same number of points.
[Hasse 1933] The number of the points on $E\left(F_{q}\right):[q+1-2 \sqrt{ } q, q+1+2 \sqrt{ } q]$ [Schoof 1985] given a, b and q, compute $\# \mathrm{E}\left(\mathrm{F}_{\mathrm{q}}\right)$ in time poly(log q).

Elliptic curve isogeny

Isogenous is an interesting equivalence relation between elliptic curves.
"A morphism ϕ from E_{1} to E_{2} is called an isogeny if it maps O on E_{1} to O on E_{2}."
[Tate 1966] Two elliptic curves E_{1} and E_{2} over a finite field F_{q} are isogenous iff they have the same number of points.
[Hasse 1933] The number of the points on $E\left(F_{q}\right):[q+1-2 \sqrt{ } q, q+1+2 \sqrt{ } q$] [Schoof 1985] given a, b and q, compute $\# \mathrm{E}\left(\mathrm{F}_{\mathrm{q}}\right)$ in time poly $(\log \mathrm{q})$.

An isogeny $\phi: E_{1} \rightarrow E_{2}$ can be explicitly written as a rational polynomial.

$$
\phi:(x, y)->\left(f(x) / h^{2}(x), g(x, y) / h^{3}(x)\right)
$$

The degree of an isogeny ϕ is the degree of the rational polynomial.

Relation among isogenous curves - isogeny graph

Left: fix a degree L

$-\ell$-isogenies
-- m-isogenies

Right: the crater with multiple degrees

Isogeny graph: each vertex is an elliptic curve; each edge is an isogeny. The graph structure is described in the PhD Thesis of Kohel (1996).
The term "isogeny volcano" is introduced in [Fouquet, Morain 02].

Representing the ideal class group

Left: fix a degree L

- ℓ-isogenies
--- m-isogenies

Right: the crater with multiple degrees

The ideal class group $\mathrm{CL}(\mathrm{O})$ acts faithfully and transitively on the set

$$
\left.\operatorname{Ello}\left(\mathrm{F}_{\mathrm{q}}\right)=\{\mathrm{j}(\mathrm{E}): \mathrm{E} \text { with End}(\mathrm{E})=\mathrm{O}\} ; \quad \#\left|\mathrm{Ello}\left(\mathrm{~F}_{\mathrm{q}}\right)\right|=\mathrm{O}(\sqrt{\mathrm{q}})\right)
$$

Faithful: no group elements g (except the identity) satisfies $g * x=x$ for all x in $E l_{0}(F q)$.
Transitive: for all x, y in $E l_{O}(F q)$, there is a g in $C L(O)$ satisfies $g * x=y$.

Example

$$
\begin{gathered}
j_{0}=15 \\
j_{6}=71
\end{gathered} \underbrace{j_{1}=48}_{j_{5}=55} j_{3}=29
$$

Example: a connecting component over F_{83}, degree $\mathrm{L}=3$.

Example

$$
\begin{gathered}
j_{5}=55 \\
j_{0}=15 \\
j_{6}=71
\end{gathered} j_{j_{4}=34}^{j_{1}=48} j_{3}=29
$$

Representing the class group $G=C L(D)$, with $D=-251, \#|G|=7$
Let jo represent the identity of G .
Let j_{1} represents an element a of norm 3 in G (i.e. $a * E_{0}=E_{1}$), then j_{6} represents -a (i.e. $-\mathrm{a} * \mathrm{E}_{0}=\mathrm{E}_{6}$)

Road map

1. Elliptic curve isogenies can be represented by a graph.
2. Isogeny graphs can be used to represent a group.
3. Over finite fields, searching for close neighbors on the graph is easy.
4. Over an RSA modulus N, finding certain neighbors is hard.
5. Hardness of finding certain neighbors $=>$ hardness of inverting group elements

Computational problems for isogeny over a finite field

Q1: Fix a polynomially large degree L , given a curve E_{0}, is there a polynomial time algorithm that finds all of its L-isogenous neighbors?

Computational problems for isogeny over a finite field

Q1: Fix a polynomially large degree L , given a curve E_{0}, is there a polynomial time algorithm that finds all of its L-isogenous neighbors?

Answer: Yes. There are two ways.
(1) Use Velu's formulae
(2) Find (the j invariant of) E1 by solving modular polynomials,

Modular polynomials

For all L>0, the L-th modular polynomial $\Psi_{\llcorner }$parameterizes pairs of elliptic curves related by an L-cyclic isogeny:
$\Psi_{\left\llcorner\left(j_{1}, j_{2}\right)\right.}=0$ if j_{1} and j_{2} are the $j_{\text {-invariants of } L \text {-isogenous elliptic curves. }}$
$\Psi_{\llcorner }(\mathrm{x}, \mathrm{y})$ has integer coefficients. Has degree $\mathrm{L}+1$ for prime L .

$$
j_{1}=48 \quad j_{2}=23
$$

In theory, Ψ_{L} is computable in polynomial time in L . In practice, the coefficients are very large.

$$
\begin{aligned}
& j_{0}=15 \\
& j_{6}=71
\end{aligned}
$$

Computational problems for isogeny over a finite field

Q2: Randomly select two curves E_{1} and E_{2} from the graph, find an explicit isogeny between them.

Current status: conjectured to be hard, even for quantum computers.
[Couveignes 97], [Rostovtsev, Stolbunov 06]: post-quantum key-exchange SIDH [De Feo, Jao 11]

CSIDH [Castryck, Lange, Martindale, Panny, Renes 18]

Road map

1. Elliptic curve isogenies can be represented by a graph.
2. Isogeny graphs can be used to represent a group.
3. Over finite fields, searching for close neighbors on the graph is easy.
4. Over an RSA modulus N, finding certain neighbors is hard.
5. Hardness of finding certain neighbors $=>$ hardness of inverting group elements

Computational problems for isogeny over an RSA modulus \mathbf{N}

How to define an isogeny graph mod N :

1. The general case: $\mathrm{j}_{1}, \mathrm{j}_{2}$ are connected if $\Psi_{\llcorner }\left(\mathrm{j}_{1}, \mathrm{j}_{2}\right)=0 \bmod \mathrm{~N}$.
2. The special case: Assume the isogeny volcanoes over F_{p} and F_{q} have the same structure, then fix jo and a direction, take CRT.

Example: Representing G = CL(-251),

$$
j_{1}=48 \quad j_{2}=23
$$

$$
j_{5}=55^{j_{4}=34}
$$

$j_{1}=162{ }_{j 2}=36$

$$
j_{1}=760{ }_{j_{2}}=1766
$$

$j_{5}=116{ }^{j_{4}=134} \quad \overrightarrow{C R T}$

Computational problems for isogeny over an RSA modulus \mathbf{N}

Basic neighbor search: Fix a poly degree L, given a curve E_{0} (its j-invariant mod N), is there a polynomial time algorithm that finds its L-isogenous neighbors?

Current status: seems to be hard.

Computational problems for isogeny over an RSA modulus \mathbf{N}

Basic neighbor search: Fix a poly degree L, given a curve E_{0} (its j-invariant mod N), is there a polynomial time algorithm that finds its L-isogenous neighbors?

Current status: seems to be hard.

The two methods over the finite field don't work.

Since they both require solving high degree polynomial mod N !

Computational problems for isogeny over an RSA modulus \mathbf{N}

Joint-neighbor-search problem: Fix a degree L, given two curves E_{0}, E_{1}, find E_{2} that is L -isogenous to E_{0}, and L^{2}-isogenous to E_{1} ?

Current status: also seems to be hard.

Natural attempt: take the gcd of $\Psi_{\mathrm{L}(\mathrm{j} 0, \mathrm{x})}$ and $\left.\Psi_{\mathrm{L}^{2}(\mathrm{j} 1}, \mathrm{x}\right)$,
 but the resulting polynomial has degree L , not 1 .

Computational problems for isogeny over an RSA modulus \mathbf{N}

Joint-neighbor-search problem: Fix a degree L , given two curves $\mathrm{E}_{0}, \mathrm{E}_{1}$, find E_{2} that is L -isogenous to E_{0}, and L^{2}-isogenous to E_{1} ?

Current status: also seems to be hard.

- ℓ-isogenies
--- m-isogenies

But for coprime degree joint neighbors,
gcd of $\Psi_{M}\left(\mathrm{j}_{1}, \mathrm{x}\right)$ and $\left.\Psi_{\llcorner(\mathrm{j} 2}, \mathrm{x}\right)$ gives a linear function
[Enge, Sutherland 10].

Road map

1. Elliptic curve isogenies can be represented by a graph.
2. Isogeny graphs can be used to reprosent a group.
3. Over finite fields, searching for close neighbors on the graph is easy.
4. Over an RSA modulus N , finding certain neighbors is hard.
5. Hardness of finding certain neighbors => hardness of inverting group elements.

Trapdoor group with infeasible inversion

Trapdoor: p, q, the discriminant D (which determines End(E_{0})), invariants of $\mathrm{CL}(\mathrm{D})$
Public parameter: $\mathrm{N}=\mathrm{pq}$, $\mathrm{jo}=\mathrm{j}\left(\mathrm{E}_{0}\right)$
Encoding of an class group element a:
Canonical encoding of $a: j\left(E_{a}\right)$ such that $E_{a}=a * E_{0}$
Composable encoding of \mathbf{a} : factorize \mathbf{a} into poly-smooth ideals, publish the canonical encoding and the norm of each of them.

Infeasibility of inversion: (L, L²)-joint neighbor problem* Feasibility of composition*: when the norms of the ideals are coprime, then gcd of modular polys is linear.

The difficulties in generating the parameters efficiently

Parameters: p, q, Eo s.t. End $\left(\mathrm{E}_{0} / \mathrm{F}_{\mathrm{p}}\right)=\operatorname{End}\left(\mathrm{E}_{0} / \mathrm{F}_{\mathrm{q}}\right)=\mathrm{O}$ of disc D.
Want D to be exponentially large (so that $\mathrm{CL}(\mathrm{D})$ is exponentially large).
Problem: how to find $\mathrm{E}_{0}, \mathrm{p}, \mathrm{q}$, with a given exponentially large discriminant D .
(The CM method only works when |D| is a polynomial, or $<10^{14}$ in practice)

Solution: Can let $D=\left(f_{1} \ldots f_{k}\right)^{2} \cdot D_{0}$ s.t. all the factors are poly
=> the order of $C L(\mathrm{D})$ is large but smooth, need to make sure the order is hidden.
=> Also need a short relation basis of $C L(D)$.
New Record: D with 154 digits [Beullens, Kleinjung, Vercauteren 19]

Cryptanalysis attempts (more: Section 5 of the paper)

The attacker sees:
The modulus N , and a bunch of j -invariants of isogenous curves.
We conjecture that the attacker cannot get:

1. p and q such that $p q=N$
2. The number of points of $\mathrm{E}_{\mathrm{o}}\left(\mathrm{Z}_{\mathrm{N}}\right)$
3. The discriminant D
4. The group size of $C L(D)$

Summary:

We propose a candidate trapdoor group with infeasible inversion from elliptic curve isogeny (available on eprint 2018/926).

Main assumption: (L, L^{2})-neighbor search problem on the isogeny graphs defined over RSA moduli

Applications of GII: broadcast encryption, directed transitive signatures, maybe more...

