
1 Assignment 5 (100 points)

To submit your work, collect your inputs not provided as part of the assignment, the required
outputs, and your answers to the written questions in pdf format (preferred) or Word, or .txt .
Clearly label all of your work. For the math-oriented portion of the assignment, you may typeset
in LaTeX or Word or provide a clear photograph of a hand-written solution. Work that is not
legible will not be graded. Name a zip file CS585 Assignment5 username.zip and submit with
web-submit. There is no code to submit for this assignment.

Collect your .cpp files and label code that you changed with comments containing your username
like: //Modified by deht

1.1 Learning Objectives

• Reinforce the basic, primitive types of transformation matrices

• Understand how to compose more complex transformations using those primitives

• Get comfortable controlling image transformations

1.2 Written Questions (20 points)

Here are the primitive matrices we described in class:
Translation:

T (tx, ty) =

[
I t

0 1

]
=

 1 0 tx

0 1 ty

0 0 1


Scaling:

S(α) =

[
αI 0

0 1

]
=

 α 0 0

0 α 0

0 0 1


Rotation:

R(θ) =

[
R 0

0 1

]
=

 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


Shearing:

Sh(βx, βy) =

 1 βx 0

βy 1 0

0 0 1


1. Using the primitives given above, write a formula describing how to transform points in an

image in order to rotate an image about its center, (cx, cy).

2. Using the primitives above, write a formula describing how to transform points in an image
in order to rotate and scale an image about its center

1



3. Using the primitives above, write a formula describing how to transform points in an image
in order to rotate and scale an image about its center, then translate the rotated and scaled
image to some other location (ix, iy).

4. Using the primitives above, write a formula for describing how to transform points in an image
in order to shear an image about its center

1.3 Technical Task (80 points)

For this assignment, we will make a spring-time collage using image transformations / matrices to
combine a set of source images into a result image. The steps towards this goal are outlined below.

You should choose a source image of your own that you like looking at to use for debugging.
The image should be no larger than 640 x 480. Submit your input image with your submission.

Beware: The code to write is quite short, but tricky. Small mistakes can manifest themselves
in dramatic ways, so be methodical if your results do not match your expectations.

1. (Given) In lab, we worked with a program to control rotation of the image using a slider.
We compared the OpenCV function, which rotates the image about the center, with our
hand-written version that rotates about the upper-left corner

2. Implement Scaling. Part 0 of the lab is to implement the function getScaleMatrix to create
a matrix representing a scaling operation. The provided skeleton code has event handling
that will call your function in order to produce a result. Drag the slider to produce a scaled
version of your image and save your result as ”Assignment5 Part0 Output Scale.png” (Do
not submit the image for rotation)

3. Reproduce the OpenCV rotation function. Part 1 of the lab is to reproduce the OpenCV
getRotationMatrix2D function. To do this, you will first implement the getTranslationMatrix
function to create a matrix representing a basic translation. Then, using the scaling operation
from Part 0, you will need to implement the function myGetRotationMatrix2D by correctly
chaining together the matrix primitives. The skeleton code will display the result of your
version along side the result of the OpenCV version. Save a rotated and scaled version of
your image as ”Assignment5 Part1 Output Mine.png”. Submit it along with the matching
”Assignment5 Part1 Output OpenCV.png”.

4. Implement Shearing. Part 2 of the lab is to create functionality that is missing in OpenCV:
create a transformation where the image is sheared about its center. You will start by imple-
menting the primitive getShearMatrix. Then, in a style similar to Part 1, you will implement
the function getShearMatrix2D that composes several primitive transformations together to
shear the image about its center. Use the sliders to shear the image horzontally and vertically.
Save a horizontally sheared version as ”Assignment5 Part2 Output Horizontal.png”. Save a
vertically sheared version as ”Assignment5 Part2 Output Vertical.png”

5. Create a spring-time collage by assembling a collection of at least 5 source images no more
than 350 x 350 pixels. Use any transformations you like to place the images with a 750 x 750
pixel canvas. Save your result as ”Assignment5 Output.png”.

The source images should be placed at different scales and orientations. You can use shears
too if you like. The source images should be scattered throughout the canvas (not clustered

2



in the upper left). Each image may be used more than once if you would like. (If you don’t
want to make a spring-themed collage, you can use subject matter of your choosing)

The skeleton code for this part is minimal in order to give you freedom to develop your own
solution from scratch. You can assemble your code using any pieces from any of the labs or
homeworks that we have done. You can make an interface to support your composition if
you want, but you don’t have to. You can generate the configuration of the sub-images with
mathematical formula, by hand, or at random. No matter how you choose to construct your
placement, your source images should remain mostly within the canvas and be spread through-
out the canvas. An example composition is provided in ”Assignment5 Output Diane.png”.

3


	Assignment 5 (100 points)
	Learning Objectives
	Written Questions (20 points)
	Technical Task (80 points)


