
1 Assignment 6 (100 points)

To submit your work, collect your inputs not provided as part of the assignment, the required
outputs, and your answers to the written questions in pdf format (preferred) or Word, or .txt .
Clearly label all of your work. For the math-oriented portion of the assignment, you may typeset
in LaTeX or Word or provide a clear photograph of a hand-written solution. Work that is not
legible will not be graded. Name a zip file CS585 Assignment6 username.zip and submit with
web-submit. Collect your .cpp files and label code that you changed with comments containing
your username like: //Modified by deht

1.1 Learning Objectives

• Use Feature detection and matching to compute a transformation between images

• Use computed transformations to manipulate the images

• Understand the mosaic creation pipeline

• Introduce basic concepts that we will need to study feature tracking

1.2 Written Questions (10 points)

1. Summarize the steps for computing a transformation matrix that describes the geometric
relationships between two images

2. Given a transformation matrix T that transforms image I2 into the same coordinate frame
as image I1, if the size of I2 is (w, h), write down a formula for each of the four corners of I2
after it has been warped using T .

1.3 Technical Task (70 points)

For this assignment, we will implement the mosaic creation pipeline to use with two and three
images. Skeleton code is given for you to fill in for the case of two images. It is up to you to extend
and modify the code in any way necessary in order to create a mosaic with three source images.

Your input images should be no larger than 640 x 480. Submit your input images along with
your output images.

1. Given: code to extract and match features from images and compute a transformation map-
ping between I2 and I1.

2. Required: Given the estimated transformation, project the corners of I2 into the same coor-
dinate frame as I1.

3. Required: Using the transformed corners, determine the size of the finished mosaic.

4. Required: To save you some debugging time, I am pointing out that the second image may
end up with portions above or to the left of the first image, in which case, you will need to
translate the entire thing down and to the right so that the entire mosaic will appear in the
canvas. Along with the mosaic size, you must compute the correct offset.

1

5. Required: Given the transformation, and having computed the mosaic size and offset, combine
the mosaic images using a “copy and paste” operation similar to your collages, using the
warpPerspective function.

Given your two source images, you should create the mosaic using both orders for the images,
to be sure that the mosaic footprint is being created correctly. Example output is provided in
Example Assignment6 Part1 Result1.png and Example Assignment6 Part1 Result1 backwards.png.

Save your output as Assignment6 Part1 Result1.png and Assignment6 Part1 Result1 backwards.png.

6. Required: Combine the source images into a mosaic by using the data from the source image
that is ”closest” to each output pixel. My solution uses the OpenCV distanceTransform

function, but yours does not have to. Save your output as Assignment6 Part1 Result2.png.

7. Required: Write a new program to extend your work from part 5 to use three images instead of
just two images. (A mostly-empty Visual Studio project is set up under Assignment6 Part2

with the correct libraries and paths.). Save your output as Assignment6 Part2.png.

You may find that you will have misregistration errors that cause the edges of your source
images to not line up precisely in the finished mosaic. This is okay. The output should look
reasonable, but it is not expected to look perfect.

8. Optional: The Lab6 project contains code demonstrating how to use the OpenCV image
stitching interface. Create a mosaic with many images using OpenCV’s functionality.

1.4 Lecture Preparation (20 pts)

Next week and after Spring Break, we will discuss different ways of working with video to
compute motion. There are many ways of thinking about motion in images. We did one of
the simplest forms of tracking when we used a ball to draw a shape to place around a face
in HW3. Please look at this Wikipedia page to get a flavor of what we will be discussing:
http://en.wikipedia.org/wiki/Video_tracking.

Here are a few things that we will need to use to be able to talk about feature tracking.

(a) The Sum of Squared Differences (SSD) is a measure of the similarity between two image
regions. Let the pixel values from image I in a particular region of interest WI be
represented by xi and the corresponding pixel values from image J in a region of interest
WJ be represented by yi. Then the Sum of Squared Differences (SSD) is given by

SSD =

|W |∑
i=1

(xi − yi)2

If you were using the Sum of Squared Differences to compute the similarity between
two images of an object in your hand, how would the results be affected if your rude
roommate came in while you were working and turned the light on or off?

(b) The Normalized Correlation Coefficient (or Normalized Cross Correlation) is a measure
of similarity that is resistant to changes in lighting (both brightness and contrast). http:
//en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation

2

http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation
http://en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation

Remember the formulas for the mean, x̄ and standard deviation σx of a quantity are
given by

x̄ =
1

|W |

|W |∑
i=1

xi

σ2
x =

1

|W |

|W |∑
i=1

(xi − x̄)2

Then, the normalized Correlation Coefficient between x and y is given by

1

|W |

|W |∑
i=1

(xi − x̄)(yi − ȳ)

σxσy

Prove that this is invariant to changes in brightness and contrast by showing that the
result will not change if you replace xi with axi + b. (Hint: Plug and chug.)

(c) The papers we will talk about next week refer to the Newton-Raphson method. Read the
first few sections of this article http://en.wikipedia.org/wiki/Newton’s_method.

In one sentence, state the goal of the Newton-Raphson method.

Given a differentiable function of one variable, f(x) write down a formula for the line
that is tangent to f at x0.

(d) Please brush up on your intuition of eigenvalues and eigenvectors. I recommend these two
pages: http://anothermathgeek.hubpages.com/hub/What-the-Heck-are-Eigenvalues-and-Eigenvectors,
http://math.stackexchange.com/questions/23312/what-is-the-importance-of-eigenvalues-eigenvectors

3

http://en.wikipedia.org/wiki/Newton's_method
http://anothermathgeek.hubpages.com/hub/What-the-Heck-are-Eigenvalues-and-Eigenvectors
http://math.stackexchange.com/questions/23312/what-is-the-importance-of-eigenvalues-eigenvectors

	Assignment 6 (100 points)
	Learning Objectives
	Written Questions (10 points)
	Technical Task (70 points)
	Lecture Preparation (20 pts)

