CS112 Lab 01, Jan 21, 24 2010

http://cs-people.bu.edu/deht/cs112 springl1/lab01/

Diane H. Theriault
deht@cs.bu.edu
http://cs-people.bu.edu/deht/




Preliminaries

| want to help you.
— Please put “CS112” in the subject line when you email

Don’t get stuck!

— Technical details (development environment, compiler errors) can be
as much work as the actual task at hand

Don’t procrastinate.

— Even professionals can get stuck on little things. Give yourself enough
time to finish.

Don’t get behind.

— You will need to understand previous material in order to go forward



Recursion

e Define the solution to a big problem in terms of
the solution to a similar, slightly smaller problem

 You know how to functionally decompose a
“normal” problem using functions

Boolean solveProblem(parameter x){

int result = Step1(x);
return Step2(result);

}



A Cartoon Recursive Function

int recursiveProblem(int x)

{
If(x == 1) return 1;
return recursiveProblem(x-1) + 1;



A Cartoon Recursive Function

* Recursive solutions have two important parts:
— Base Case (what to do with trivial inputs)

— Recursive Call (how to solve the problem)

int recursiveProblem(int x)

{

If(x == 1) return 1; //base case
return recursiveProblem(x-1) + 1; //recursive call

}



A Classic Recursive Problem

e Fibonacci numbers (you’ve seen this on the SAT!)

e Each number in the sequence is the sum of the
previous two numbers

int Fibonacci(int x)

{

if(x == 0) return O;
If(x == 1) return 1;
return Fibonacci(x-1) + Fibonacci(x-2);

J



Recursive functions and Stack frames

Every time you call any function, the local
variables, arguments, etc. are saved, before
jumping to the next function.

When a function returns, the caller’s state is
restored before continuing execution

The place where this information is saved is
called “the stack” or “the call stack.”

Practical Upshot: Each call to a function has its
owh copy of its arguments and local variables
(a.k.a. a stack frame)



Normal functions and Stack frames

Void doWork(int x) What happens when you
{ call doWork(2)?
int y=5;
int z = StepOne(x,y);
}
int StepOne(int x, int y)
{
int g = StepTwo(x*y, x)
return q;
}
int StepTwo(int g, inr)
{
intx =q/r;
return x;

}



Normal functions and Stack frames

Void doWork(int x)

{
int y=5;
int z = StepOne(x,y);
}
int StepOne(int x, int y)
{
int g = StepTwo(x*y, x)
return q;
}
int StepTwo(int g, inr)
{
intx =q/r;
return x;

}



Normal functions and Stack frames

Void doWork(int x)

{ StepOne()
int y=5; 2
int z = StepOne(x,y); 5
}
int StepOne(int x, int y)
{
int g = StepTwo(x*y, x)
return q;
}
int StepTwo(int g, inr)
{
intx =q/r;
return x;

}



Normal functions and Stack frames

Void doWork(int x)

tepTwo
{ StepTwo()
int y=5; 10
int z = StepOne(x,y); 2
i 5
int StepOne(int x, int y)
{ StepOne()
int q = StepTwo(x*y, x) 2
return q; 5
}
int StepTwo(int g, in r) doWork()
{ X=2
intx=q/r; y=5
return x;

}



Normal functions and Stack frames

Void doWork(int x)

{ StepOne()
int y=5;
int z = StepOne(x,y);
}
int StepOne(int x, int y)
{ doWork()
int g = StepTwo(x*y, x) 9
return q; 5
}
int StepTwo(int g, inr)
{
intx =q/r;
return x;

}



Normal functions and Stack frames

Void doWork(int x)

{
int y=5;
int z = StepOne(x,y);
}
int StepOne(int x, int y)
{
int g = StepTwo(x*y, x)
return q;
}
int StepTwo(int g, inr)
{
intx =q/r;
return x;

}



Recursive functions and Stack frames

Void doWork(int x) What happens when you
{ call doWork(2)?

int z = recursive(x)

}

int recursive(int x)
{
inty;
if(x == 1)
y=>5;
else
y = recursive(x-1)+1;
returny;



Recursive functions and Stack frames

Void doWork(int x)
{

int z = recursive(x)

}

int recursive(int x)
{
inty;
if(x == 1)
y=>5;
else
y = recursive(x-1)+1;
returny;



Recursive functions and Stack frames

Void doWork(int x)
{

recursive()

int z = recursive(x)

J doWork()
int recursive(int x)

{
inty;

if(x == 1)
y=>5;

else
y = recursive(x-1)+1;
returny;



Recursive functions and Stack frames

Void doWork(int x)
{

recursive()

int z = recursive(x) 1
5

}

int recursive(int x)

{
inty;

if(x ==1) doWork()
y=>5;

recursive()

else
y = recursive(x-1)+1;
returny;



Recursive functions and Stack frames

Void doWork(int x)
{

recursive()

int z = recursive(x) 2

}

int recursive(int x) doWork()

{
inty;

if(x == 1)
y=>5;

else
y = recursive(x-1)+1;
returny;



Recursive functions and Stack frames

Void doWork(int x)
{

int z = recursive(x)

}

int recursive(int x)
{
inty;
if(x == 1)
y=1
else
y = recursive(x-1)+1;
returny;



How to Think about Recursive Functions

e Use wishful thinking:

“If only | knew the answer to , solving this
problem would be easy.”

e Understand which variables are changing,
and which are constant

* Think about the easiest version(s) of your
problem (define your base case)

 Run your program in your head (or on
paper) using some simple, but not trivial
Inputs




Practical Lab:
Implementing Exponentiation

e Write a function to recursively compute the
function f(x,n) = x"

* Compare your results with the built-in java
function Math.pow(x,n);

 This can be implemented by repeated
squaring: f(x,n) = x"/2 *xn/2
— Assume that n is an integer
— What do you need to do if n is odd?



Practical Lab:
Counting the number of recursive calls

 Add features to your exponentiation function
to count the number of recursive calls.

e How can you improve your efficiency by
caching your results?

e Count the number of recursive calls with and
without your optimization



Things you will need for HW1

Derivative of a polynomial function:
— F(x)=x"+c 2 F(x)=n*xn1
Java exponentiation function:
— Math.pow(x,n); // x"
Declaring an array in Java
— int [] intArray = new int[10];
Input and output
— (Google “standard out” and “standard in”)

— System.out.printin(...)

— BufferedReader in = new BufferedReader(new InputStrea
mReader(System.in));



