CS112 Lab 02, Jan 28, 31 2010

http://cs-people.bu.edu/deht/cs112 springl1/lab02/

Diane H. Theriault
deht@cs.bu.edu
http://cs-people.bu.edu/deht/

Today’s Topics

* Inheritance & Interfaces

References

http://download.oracle.com/javase/tutorial/java/landl/index.html

(Inheritance & Interfaces)

http://download.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/LinkedList.html
(LinkedList and Queue API)

http://download.oracle.com/javase/tutorial/java/generics/index.html

Generics

Inheritance

e “is a” relationship.
— A Motorcycle IS A Vehicle
— A Car IS A Vehicle
— A Ship IS A Vehicle BEVESEeE

Vehicle

public class Vehicle { ... }
public class Car extends Vehicle {...}

(BTW, Inheritance hierarchies can be a source of a lot of arguments in large code bases!)

Inheritance

 When a class extends a superclass, it inherits
all of the member variables and methods of
the parent class

e A subclass can override or change the
behavior of any of the methods of the
superclass. (This is called polymorphism)

 Everything in Java inherits from the “Object” class.

Inheritance

Assigning Subclass to Superclass reference is free.
Object myObject = new LinkedList();

Assigning Superclass to Subclass must be done carefully.

Java checks for type compatibility at run-time.
LinkedList myList = (LinkedList) myObject;

Doing it incorrectly can cause exceptions (crashes)
Object myObject = new String(“hello”)

Vehicle myVehicle = (Vehicle) myObject;

//WRONG!

Inheritance

 An “abstract” class does not need to provide a
base implementation for all of its methods.

e The keyword “super” is used in subclasses to
invoke the constructor of the parent (possibly
with arguments)

Interface

e “acts like a” relationship
ke a transportation mechanism

— A Car acts
ke a bright shiny object

— A Car acts

ke a thing that needs maintenance

— A Car acts

e A contract to provide certain functionality

public interface Drivable { public void steer(); }
public class Car extends Vehicle implements Drivable

{ ..
public void steer() {...}

/

Inheritance vs Interfaces

A “base class” or “superclass” can have many
“subclasses”

In Java, a subclass can only extend one superclass.

BUT, some objects can have many different types of
behavior (implement many different interfaces).

(Interfaces can inherit from other interfaces, just like classes)

Example from Java Library

public class LinkedList<E>

extends AbstractSequentialList<E>

implements List<E>, Queue<E>, Cloneable, Serializable

public interface Collection<E>
extends Iterable<E>

(We will explain the <E> notation in a bit)

Referencing Objects

 Can refer to an object using a reference of its type,
any of its parent’s types, or the type of any interface
it implements

LinkedList myList = new LinkedList(); //the type itself

Object myList = new LinkedList();
//everything in Java inherits from Object

Queue myLlist = new LinkedList();
//LinkedList implements the Queue interface

Drawable myList = new LinkedList();
//No! LinkedList does not implement Drawable!

How do you know?

e How do you know what class XXX inherits from?
e How do you know what interfaces it implements?

e The Java Doc!
http://download.oracle.com/javase/1.5.0/docs/api/

Today’s Topics

e Collections and Iterators (Queue in particular)

Collections

e “Collection” is a Java interface.
e |tis implemented by several classes

(ArrayList, LinkedList, TreeSet, etc.)

http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html

Methods include: add(), remove(), size(), etc.

Collections & Iterators

e Collections can be stored in many ways
(that we will learn about in C5112)

e [terators provide a unified way to access the
elements of a collection

e (The Collection interface extends the Iterable interface)

Why use Iterators?

Why can’t | just loop over a collection using
for(int i=0; ixmyCollection.size(); i++)?

This only works for arrays!

— Not Arraylists, LinkedLists, or any other type of
Collection.

Even if it did work, there are many data structures
(like trees) where the notion of the “i’th” element is
not well-defined

Within a structure, indexes can change as you
manipulate the object.

Two ways to iterate over a Collection

e Just syntax. Semantically identical.

for(Iterator iter=myList.iterator(); iter.hasNext();)
{
Object myObject = iter.next();
System.out.printin(myObject);

J

//confusing! The next() call both retrieves the current
item in the collection and increments the iterator.

Two ways to iterate over a Collection

e Just syntax. Semantically identical.

for(Object myObject: mylList)

{
System.out.printIn(myObject);

}
//much better!

What is a Queue?

e First In, First Out (FIFO)
e First Come, First Serve (FCFS)

e Like being in line at the movies.

The Queue Interface

e Queue is just another Java interface, which
happens to be implemented by LinkedList.

e |tinherits from Collection.

Queue myQueue = new LinkedList();
myQueue.offer()

myQueue.peek()

myQueue.poll() / myQueue.remove()

http://download.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html

The Queue Interface
e What’s with the weird names?

 Queues can fill up.
— Offer() can return false

— Add() can only throw an exception

e Also, need to differentiate between the
gueue-like methods and the collection-like

methods (which may not enforce ordering
correctly).

Today’s Topics

e (Generics

Collections and Types

e Collections don’t know what’s in them.
 Type-checking must be done at run-time.

e Exceptions and crashes may ensue.

LinkedList myList = new LinkedList();
myList.add(new String(“hello”));
for(Object myObject: mylList)
{
Integer value = (Integer) myObject; //exception!
System.out.printin(value);

Types and Generics

e Special “<...>” syntax allows you to promise
the type of objects that the Collection holds.

e This allows compile-time type-checking.

LinkedList<String> myList = new LinkedList<String>();
myList.add(new String(“hello”));
for(String myObject: myList)
{
Integer value = (Integer) myObject; //compiler error!
System.out.printin(value);

Practical Lab: DiscoveryChannel Party

* | have invited the casts of 3 Discovery Channel
series to my house for a party.

e Each cast will travel in their preferred vehicle
type
— Mythbusters (Car)
— Deadliest Catch (Ship)
— American Chopper (Motorcycle)

Practical Lab: DiscoveryChannel Party

 Motorcycle, Car, and Ship extend Vehicle

— Vehicle has Strings mName and mDriver

— Vehicle has abstract methods
o getManifest() // returns a list of Strings (passenger names)
e Go() //returns a string describing the action of the Vehicle

e Car and Ship implement MultipleOccupancy

— MultipleOccupancy requires an addPassenger method.

e Given the driver class, fill in the
implementation of Motorcycle, Car, and Ship

Practical Lab: DiscoveryChannel Party

 The skeleton code:
— Creates some vehicles containing the people.
— Prints the Vehicle driver and name
— Invokes the Go() method
— Welcomes each of the people in each Vehicle to the
party
* | have implemented the Motorcycle class for you.

Practical Lab: DiscoveryChannel Party

e Car and Ship will need some type of Collection
to hold the set of passengers.

e Asyou know, there is a lot of drama on
Deadliest Catch. You will need to use a data
structure that provides first-come, first-serve
access to avoid conflicts.

Practical Lab: DiscoveryChannel Party

 On Deadliest Catch, they are very proud of
their boats.

 Change the implementation of the Ship
constructor so that the name of the boat will
be printed, instead of the word “boat”

— Hint: add an additional argument to the
constructor.

Practical Lab: DiscoveryChannel Party

e The caravan variable in the main is a Set, not a
Queue.

e |In the Travel() method, note that the items in

caravan are not printed in the order that they
were added.

Things you will need for HW1

 Q1: Derivative of a polynomial function:

—F(x) =x"+c =2 F/(x) =n * x"!

e Q2: you do not need to discuss the complexity
/ run-time.

e Q3: you will need to use a data structure that
implements the Queue interface.

