CS112 Lab 05, Feb 18, 22 2010

http://cs-people.bu.edu/deht/cs112_spring11/lab05/

Diane H. Theriault

deht@cs.bu.edu

http://cs-people.bu.edu/deht/

Computational Complexity and Run-time Analysis

Which algorithm will be faster?

 How many steps does your program take to finish, given an input of a particular size?

Computational Complexity and Run-time Analysis

- "Size" of an input depends on context
 - Number of Wallies after N steps
 - Find the smallest number in a list of N items
 - Number of items to sort
 - Length of two strings to compare

Computational Complexity and Run-time Analysis

- Run-time is expressed as a function of the input size (however that is measured)
- These functions are called by their usual math names

1	Constant
log N	Logarithmic
N	Linear
N^2 , N^3 , N^k	Quadratic, Cubic, Polynomial
2 ^N	Exponential

Example Linear Algorithm

```
int function(int N)
  int numSteps = 0;
  for(int i=0; i<N; i++)
   numSteps ++;
  return numSteps;
```

Example Quadratic Algorithm

```
int function(int N)
   int numSteps = 0;
  for(int i=0; i<N; i++)
       for(int j=0; j<N; j++)
        numSteps ++;
   return numSteps;
```

Example Constant Algorithm

```
int function(int N)
{
   return 1;
}
```

Example Logarithmic Algorithm

```
int function(int N)
  int numSteps = 0;
  for(int i=N; i>=1; i/=2)
   numSteps ++;
  return numSteps;
```

Example Exponential Algorithm

```
int fibonacci(int N)
{
   if(N == 0 || N == 1) return N;
   return fibonacci(N-1) + fibonacci(N-2);
}
```

"Big O" notation

 Computer science way of writing down the relationships between functions.

 What is the term that "dominates" the function?

- Don't count
 - "constant factors"
 - "lower order terms"

"Big O" notation

- Run-time of some algorithm: $5 N^2 + 3N 5$
- We only care about the term with the largest rate of growth.
- Constant factors are discarded.

•
$$5 N^2 + 3N - 5 = O(N^2)$$

"Big O" notation

• f(n) = O(g(n)) if (and only if)

Limit f(n) / g(n) converges

 f(n) and g(n) never differ by more than a constant factor.

Comparing functions

- What does it mean for the limit of a function h(x) to converge?
- As x gets very large, h(x) asymptotically approaches some value
 - -H(x) = 1/x converges to 0
 - -h(x) = (4x + 5) / 2x converges to 2
 - -h(x) = x does not converge!

Comparing functions

 When algebraic manipulation fails, we can use l'Hôpital's rule to help see the relationship between functions

• limit(f(n) / g(n)) = limit(f'(n) / g'(n))

 Keep applying this until your numerator or denominator is a constant

- $F(x) = 5x^2 + 2x + 3$
- $G(x) = x^2$

- $F(x) = 5x^2 + 2x + 3$
- $G(x) = x^2$
- $\lim (5x^2 + 2x + 3) / x^2 = \lim (10x + 2) / 2x = \lim 10 / 2$

- $F(x) = 5x^2 + 2x + 3$
- $G(x) = x^2$
- $\lim (5x^2 + 2x + 3) / x^2 = \lim (10x + 2) / 2x = \lim 10 / 2$
- Converges!
- F(x) = O(G(x))

- $F(x) = 5x^2 + 2x + 3$
- G(x) = 20x

- $F(x) = 5x^2 + 2x + 3$
- G(x) = 20x
- $\lim (5x^2 + 2x + 3) / 20x = \lim (10x + 2) / 20 = \lim .5x + .1$

- $F(x) = 5x^2 + 2x + 3$
- G(x) = 20x
- $\lim (5x^2 + 2x + 3) / 20x = \lim (10x + 2) / 20 = \lim .5x + .1$
- Does not converge! F(x) != O(G(x))

- $F(x) = 5x^2 + 2x + 3$
- G(x) = 20x
- $\lim (5x^2 + 2x + 3) / 20x = \lim (10x + 2) / 20 = \lim .5x + .1$
- Does not converge! F(x) != O(G(x))
- BUT, lim 1 / (.5x+.1) does converge
 G(x) = O(F(x))

Theta (⊕) notation

Expresses "equality" between functions

- If f(x) = O(g(x))and g(x) = O(f(x))
- Then, $f(x) = \Theta(g(x))$
- $10x^2 = \Theta (5x^2 + 2x + 3) = \Theta(100 x^2 + 10x)$

Logarithms and Exponentials

- Logarithmic and exponential functions are very important in computer science (usually can assume base 2)
- Some simple rules are useful for manipulating them:

$2^a * 2^b = 2^{a+b}$	$(2^a)^b = 2^{ab}$
$2^{a} / 2^{b} = 2^{a-b}$	
$\log(a*b) = \log(a) + \log(b)$	$\log(a^b) = b \log(a)$
$\log(a/b) = \log(a) - \log(b)$	
$\log_a a^n = n$	$a^{\log_a n} = n$
$\log 2^n = n$	$2^{\log n} = n$

A fun party trick

How high can you count on your fingers?

• It's not ten.

Worked examples

• 1 vs 1037

• $n^3 + 2n^2 + 1000 \text{ vs } n^5$

• log n vs log log n

• 2²ⁿ vs 2ⁿ

On your homework:

- Use the tools we talked about today
- Put each "O" on a separate line
- Put all the Θ 's on the same line
- You don't need to submit proofs