Computational Complexity and Run-time Analysis

• Which algorithm will be faster?

• How many steps does your program take to finish, given an input of a particular size?
Computational Complexity and Run-time Analysis

• “Size” of an input depends on context
 – Number of Wallies after N steps
 – Find the smallest number in a list of N items
 – Number of items to sort
 – Length of two strings to compare
Computational Complexity and Run-time Analysis

- Run-time is expressed as a function of the input size (however that is measured)
- These functions are called by their usual math names

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
</tr>
<tr>
<td>log N</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>N^2, N^3, N^k</td>
<td>Quadratic, Cubic, Polynomial</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
</tbody>
</table>
Example Linear Algorithm

```c
int function(int N)
{
    int numSteps = 0;
    for(int i=0; i<N; i++)
    {
        numSteps ++;
    }
    return numSteps;
}
```
Example Quadratic Algorithm

```c
int function(int N)
{
    int numSteps = 0;
    for(int i=0; i<N; i++)
    {
        for(int j=0; j<N; j++)
        {
            numSteps ++;
        }
    }
    return numSteps;
}
```
Example Constant Algorithm

```c
int function(int N)
{
    return 1;
}
```
Example Logarithmic Algorithm

```c
int function(int N)
{
    int numSteps = 0;
    for(int i=N; i>=1; i/=2)
    {
        numSteps ++;
    }
    return numSteps;
}
```
Example Exponential Algorithm

```c
int fibonacci(int N)
{
    if(N == 0 || N == 1) return N;
    return fibonacci(N-1) + fibonacci(N-2);
}
```
“Big O” notation

• Computer science way of writing down the relationships between functions.

• What is the term that “dominates” the function?

• Don’t count
 – “constant factors”
 – “lower order terms”
“Big O” notation

• Run-time of some algorithm: $5N^2 + 3N - 5$

• We only care about the term with the largest rate of growth.

• Constant factors are discarded.

• $5N^2 + 3N - 5 = O(N^2)$
“Big O” notation

- $f(n) = O(g(n))$ if (and only if)
- Limit $f(n) / g(n)$ converges
- $f(n)$ and $g(n)$ never differ by more than a constant factor.
Comparing functions

• What does it mean for the limit of a function $h(x)$ to converge?

• As x gets very large, $h(x)$ asymptotically approaches some value
 - $H(x) = 1/x$ converges to 0
 - $h(x) = (4x + 5) / 2x$ converges to 2
 - $h(x) = x$ does not converge!
Comparing functions

• When algebraic manipulation fails, we can use l’Hôpital’s rule to help see the relationship between functions

\[\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \lim_{n \to \infty} \left(\frac{f'(n)}{g'(n)} \right) \]

• Keep applying this until your numerator or denominator is a constant
Example

• $F(x) = 5x^2 + 2x + 3$
• $G(x) = x^2$
Example

• $F(x) = 5x^2 + 2x + 3$
• $G(x) = x^2$
• $\lim (5x^2 + 2x + 3) / x^2 = \lim (10x + 2) / 2x = \lim 10 / 2$
Example

- $F(x) = 5x^2 + 2x + 3$
- $G(x) = x^2$
- $\lim (5x^2 + 2x + 3) / x^2 = \lim (10x + 2) / 2x = \lim 10 / 2$
- Converges!
- $F(x) = O(G(x))$
Example

• $F(x) = 5x^2 + 2x + 3$
• $G(x) = 20x$
Example

- $F(x) = 5x^2 + 2x + 3$
- $G(x) = 20x$
- $\lim \frac{5x^2 + 2x + 3}{20x} = \frac{\lim (10x + 2)}{20} = \frac{\lim 0.5x + 0.1}{20} = 0.005$
Example

• $F(x) = 5x^2 + 2x + 3$
• $G(x) = 20x$
• $\lim (5x^2 + 2x + 3) / 20x = \lim (10x + 2) / 20 = \lim .5x + .1$
• Does not converge! $F(x) \neq O(G(x))$
Example

- $F(x) = 5x^2 + 2x + 3$
- $G(x) = 20x$
- $\lim (5x^2 + 2x + 3) / 20x = \lim (10x + 2) / 20 = \lim .5x + .1$
- Does not converge! $F(x) \neq O(G(x))$
- BUT, $\lim 1 / (.5x+.1)$ does converge $G(x) = O(F(x))$
Theta (Θ) notation

- Expresses “equality” between functions

- If $f(x) = O(g(x))$ and $g(x) = O(f(x))$ then, $f(x) = \Theta(g(x))$

- $10x^2 = \Theta(5x^2 + 2x + 3) = \Theta(100x^2 + 10x)$
Logarithms and Exponentials

- Logarithmic and exponential functions are very important in computer science (usually can assume base 2)
- Some simple rules are useful for manipulating them:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^a \times 2^b = 2^{a+b})</td>
<td>((2^a)^b = 2^{ab})</td>
</tr>
<tr>
<td>(2^a / 2^b = 2^{a-b})</td>
<td></td>
</tr>
<tr>
<td>(\log(a \times b) = \log(a) + \log(b))</td>
<td>(\log(a^b) = b \log(a))</td>
</tr>
<tr>
<td>(\log(a/b) = \log(a) - \log(b))</td>
<td></td>
</tr>
<tr>
<td>(\log_a a^n = n)</td>
<td>(a^{\log_a n} = n)</td>
</tr>
<tr>
<td>(\log 2^n = n)</td>
<td>(2 \log n = n)</td>
</tr>
</tbody>
</table>
A fun party trick

• How high can you count on your fingers?

• It’s not ten.
Worked examples

- $1 \text{ vs } 1037$
- $n^3 + 2n^2 + 1000 \text{ vs } n^5$
- $\log n \text{ vs } \log \log n$
- $2^{2n} \text{ vs } 2^n$
On your homework:

- Use the tools we talked about today
- Put each “O” on a separate line
- Put all the \(\Theta \)’s on the same line
- You don’t need to submit proofs