Measuring Data: Bits and Bytes

- Bit = 0 or 1

- One byte is 8 bits.
 - example: 01101100

- Other common units:

<table>
<thead>
<tr>
<th>name</th>
<th>approximate size</th>
<th>exact size</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilobyte (KB)</td>
<td>1000 bytes</td>
<td>$2^{10} = 1024$ bytes</td>
</tr>
<tr>
<td>megabyte (MB)</td>
<td>1 million bytes</td>
<td>2^{20} bytes</td>
</tr>
<tr>
<td>gigabyte (GB)</td>
<td>1 billion bytes</td>
<td>2^{30} bytes</td>
</tr>
</tbody>
</table>

- Scientists are starting to generate data collections measured in:
 - terabytes: 2^{40} or approx. 10^{12} bytes
 - petabytes: 2^{50} or approx. 10^{15} bytes
 - equivalent to the text in one billion books!
Storing Data: Memory

- Used to store programs and other data that are currently in use.
- Values stored in memory are read into the CPU to be operated on.
- The results of operations performed by the CPU can be written back to memory.
- Advantage of memory: short access times
 - can read from/write to memory in nanoseconds (10⁻⁹ sec)
- Disadvantages:
 - relatively expensive
 - contents are lost when the power is turned off

Storing Data: Secondary Storage

- Used to store programs and other data for later use.
 - examples: hard disks, floppy disks, CD/DVD drives, tape drives
- Advantages of hard disks:
 - relatively inexpensive
 - contents are retained when the power goes off
- Disadvantage: long access times
 - roughly 10 ms (10⁻³ sec)
 - in that time, a modern CPU can perform millions of operations!
 - it's important to minimize the number of times that the disk is accessed
What is a Database?

• A collection of data
 • it does not need to be on a computer.
 • example: the paper card catalogs that libraries maintained

• A given database may be divided into subcollections (tables)
 • should be related in some way
 • example: a university database
 • possible subcollections?

Database vs. Database Management System

• A database is a collection of data. It is not a piece of software.

• A database management system (DBMS) is the software that manages one or more databases.
Key Functions of a DBMS

1. efficient storage
2. providing a logical view of data
3. query processing
4. transaction management

• Let's look at each of them in turn.

1. Efficient Storage

• Recall: accessing the disk is very inefficient.

• A DBMS organizes the data on disk in ways that allow it to reduce the number of disk accesses.

• Example:
 • a database with 100,000 records
 • a given record is between 64-256 bytes long

• An inefficient approach:
 • give each record 256 bytes, even though it may not need it
 • scan through the database to find a record
 • may require thousands of disk reads!
1. Efficient Storage (cont.)

- A more efficient approach:
 - give each record only as much space as it needs
 - use a special *index structure*
 - allows the DBMS to locate a particular record *without* looking at every record
 - can dramatically reduce the number of disk accesses
 - as few as 1-3!

- A DBMS can also spread a database over multiple disks.
 - allows for larger collections of data
 - the disks can be accessed in parallel, which speeds things up
 - another advantage of using multiple disks?

2. Providing a Logical Representation of Data

Logical representation (tables, fields, etc.)

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>address</th>
<th>class</th>
<th>dob</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345678</td>
<td>Jill Jones</td>
<td>Warren Towers 100</td>
<td>2007</td>
<td>3/10/85</td>
</tr>
<tr>
<td>25252525</td>
<td>Alan Turing</td>
<td>Student Village A210</td>
<td>2010</td>
<td>2/7/88</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Physical representation
- disks
- (bytes on disk blocks, index structures, etc.)

- The DBMS takes care of translating between the representations.
 - makes the user's job much easier!

- This is an example of *abstraction*.
 - hide low-level details behind a simpler representation
 - an important concept in computer science
3. Query Processing

- A DBMS has some type of *query language*.
 - example: SQL
 - includes commands for:
 - adding new records
 - modifying or deleting existing records
 - retrieving data according to some criteria

- The DBMS determines the best way to execute a query-language command.
 - which index structures to use
 - if multiple operations are needed, the order in which they should be carried out

4. Transaction Management

- A *transaction* is a sequence of operations that is treated as a single logical operation.

- Example: balance transfer of $50 from blue to pink
 - remove $50 from blue
 - add $50 to pink
 ![Diagram of piggy banks with $450 and $300]
4. Transaction Management

- A transaction is a sequence of operations that is treated as a single logical operation.

- Example: balance transfer of $50 from blue to pink
 - remove $50 from blue
 - add $50 to pink

- Without a transaction, bad things could happen!

By using a transaction for the balance transfer, we ensure that all of the steps happen, or none do.

- all or nothing!

remove $50 from blue

*** CRASH ***

Money is lost!

remove $50 from blue

*** CRASH ***

restore original state
4. Transaction Management (cont.)

- Other examples:
 - making a flight reservation
 select flight, reserve seat, make payment
 - making an online purchase
 - making an ATM withdrawal

- Ensure that operations by different users don’t overlap in problematic ways.
 - example: what’s wrong with the following?

    ```
    user's balance transfer
    remove 500 from blue
    read blue balance
    read pink balance
    if (blue + pink < minimum)
      charge the user a fee
    add 500 to pink
    bank's check for clients below minimum balance
    ```

Database Applications

- Users often use a database application.
 - a separate piece of software that interacts with the DBMS
- Provide easier access the database.
 - don't need to know the query language
- Examples:
 - the software that runs on ATMs for a bank
 - a web interface to a library database
Desktop Database System

• Combines the functions of a database application and a DBMS.
 • examples: Microsoft Access, Filemaker Pro

• Includes tools/wizards for building the databases, forms, etc.

• Less flexible and less powerful than a full-fledged DBMS.
 • doesn't support all possible operations
 • doesn't support multi-user applications
 • doesn't scale well to very large databases

Looking Ahead

• The logical representation that a DBMS uses is based on some type of data model.

• There are a number of different models that can be used for this purpose.

• The most prevalent one is the relational model.

• We'll look next at the key features of this model.

• Reminder: complete Lab 0 by the first lab