Welcome to CS 105!

- This course examines how collections of data are organized, stored, and processed.

- Topics include:
 - databases
 - programming
 - data mining
 - data visualization

- We'll consider applications from a variety of domains.
 - business, the arts, the life sciences, the social sciences
Broad Goals of the Course

• To give you computational tools for working with data
• To give you insights into databases and data mining
 • help you to understand their increasingly important role
• To expose you to the discipline of computer science
 • to how computer scientists think and solve problems

“Computer science is not so much the science of computers as it is the science of solving problems using computers.”
- Eric Roberts, Stanford

Data, Data Everywhere!

• financial data
• commercial data
• scientific data
• socioeconomic data
• etc.
Databases

• A *database* is a collection of related data.
 • example: the database behind StudentLink
 • other examples?

• Managed by some type of *database management system* (DBMS)
 • a piece of software (a program) that allows users to store, retrieve, and update collections of data

The Amount of Data Is Exploding!

• Example: the GenBank database of genetic sequences

 • on this graph, the data doubles every 12-14 months
 • as of May 2006, the doubling time was less than a year and getting shorter!
The Amount of Data Is Exploding!

- Example: the UN Database (data.un.org)

from "An Analysis of Factors Relating to Energy and Environment in Predicting Life Expectancy", CS 105 Final Project by Valerie Belding '12

The Amount of Data Is Exploding!

- Example: the Google Ngrams Corpus

books.google.com/ngrams
The Amount of Data Is Exploding!

Relational Databases

- Most data collections are managed by a DBMS that employs a way of organizing data known as the relational model.
 - examples: IBM DB2, Oracle, Microsoft SQL Server, Microsoft Access

- In the relational model, data is organized into tables of records.
 - each record consists of one or more fields
 - example: a table of information about students

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>address</th>
<th>class</th>
<th>dob</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345678</td>
<td>Jill Jones</td>
<td>Warren Towers 100</td>
<td>2007</td>
<td>3/10/85</td>
</tr>
<tr>
<td>25252525</td>
<td>Alan Turing</td>
<td>Student Village A210</td>
<td>2010</td>
<td>2/7/88</td>
</tr>
<tr>
<td>33566891</td>
<td>Audrey Chu</td>
<td>300 Main Hall</td>
<td>2008</td>
<td>10/2/86</td>
</tr>
<tr>
<td>45678900</td>
<td>Jose Delgado</td>
<td>Student Village B300</td>
<td>2009</td>
<td>7/13/88</td>
</tr>
<tr>
<td>66666666</td>
<td>Count Dracula</td>
<td>The Dungeon</td>
<td>2007</td>
<td>11/1431</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
SQL

- A relational DBMS has an associated query language called SQL that is used to:
 - define the tables
 - add records to a table
 - modify or delete existing records
 - retrieve data according to some criteria
 - example: get the names of all students who live in Warren Towers
 - example: get the names of all students in the class of 2017, and the number of courses they are taking
 - perform computations on the data
 - example: compute the average age of all students who live in Warren Towers

Example Database

- A relational database containing data obtained from imdb.com

 - We'll use SQL to answer (or at least explore) questions like:
 - How many of the top-grossing films of all time have won one or more Oscars?
 - Does the Academy discriminate against older women?
Beyond Relational Databases

• While relational databases are extremely powerful, they are sometimes inadequate/insufficient for a given problem.

• Example: DNA sequence data

>gi|49175990|ref|NC_000913.2| Escherichia coli K12, complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTA
ACGCTATAGCACCCATATTACCACCAACCACTAACCTCACACAGCAAGAATGCAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA
GATGCTAGAAAACCAATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTTGCCGAACTTTTGACGGGACTCGCCGCCGCCAG
CCGGGGTTCCCGCTGGCGCAA

• common queries involve looking for similarities or patterns
 • what genes in mice are similar to genes in humans?

• need special algorithms (problem-solving procedures)

• biologists store this data in text files and use simple computer programs to process it

• we'll learn to write simple programs using Python

Data MINING Everywhere!

• Informally, data mining is the process of finding patterns in data.

• Example: customized recommendations

[DRAMA SUGGESTIONS (about 82) See all→](https://www.netflix.com)

- The Wrestler
 - Because you enjoyed:
 - Sin City
 - Reservoir Dogs
 - The Big Lebowski

- The Visitor
 - Because you enjoyed:
 - Gandhi
 - The Motorcycle Dance
 - The Queen

- Brick
 - Because you enjoyed:
 - The Big Lebowski
 - Rushmore
 - Flight Club

• Example: detecting credit-card fraud
Data MINING Everywhere!

The New York Times

February 18, 2012

How Companies Learn Your Secrets

By CHARLES Duhigg

Andrew Pole had just started working as a statistician for Target in 2000, when two colle-
marketing department stopped by his desk to ask an odd question: "If we wanted to figu-
customer is pregnant, even if she didn’t want us to know, can you do that?"

Pole has a master’s degree in statistics and another in economics, and has been obsessed
intersection of data and human behavior most of his life. His parents were teachers in No-
while other kids were going to 4-H. Pole was doing algebra and writing computer program
 stereotype of a math nerd is true," he told me when I spoke with him last year. "I kind of
and evangelizing analytics."

• Target may know that your friend
is pregnant before you do!

Data MINING Everywhere!

The New York Times

How the U.S. Uses Technology to Mine More Data More Quickly

By JAMES RISE and ERN LUEBU

Published: June 8, 2013 360 Comments

WASHINGTON — When federal analysts hunting terrorists
wrote new ways to comb through the troves of phone records, e-
mail and other data piling up as digital communications exploded
Structure of the Course

• databases (4 weeks)
• programming in Python (4 weeks)
• data graphics/visualization (1 week)
• data mining (4 weeks)

Requirements

• Attendance at and participation in lectures and labs (10%)
 • everyone has an allowance of 3 missed classes;
 do not email unless extreme circumstances
 • labs begin next week
 • held in the CS teaching lab, EMA 304
 • complete Lab 0 sometime this week
 (see course website)
• Nine homework assignments (30%)
• Final project (10%): done in teams of three
 • use the techniques covered in the course to explore a
 dataset that interests you
• Three quizzes (20%)
• Final exam (30%)
Textbooks

- **optional:** *Database Concepts, 7th edition* by Kroenke & Auer (Prentice Hall, 2015)

- **required:** *The CS 105 Coursepack*
 - contains all of the lecture notes
 - will be available at Fedex Office at the corner of Comm Ave and Cummington Mall (the Warren Towers building)

Course Staff

- Instructor: Dave Sullivan (dgs@cs.bu.edu)
- Teaching fellow: Nabeel Akhtar (nabeel@bu.edu)
- Office hours and contact info. will be available on the course Web site:
 - http://www.cs.bu.edu/courses/cs105
- *For general course-related questions, email:*
 - cs105-staff@cs.bu.edu
 - which will forward your question to the full course staff.
Algorithm for Finding My Office

1. Go to the entrance to the MCS (math/CS) building at 111 Cummington Mall – behind Warren Towers.
 Do not enter this building!

2. Turn around and cross the street to the doors across from MCS.

3. Enter those doors and take an immediate right.
 (continued on next slide)

Algorithm for Finding My Office (cont.)

4. As you turn right, you should see the door below. Open it and go up the stairs to the second floor.

5. As you leave the stairs, turn right and then go left into a small hallway. My office is the first door on the left (PSY 228D).
Other Details of the Syllabus

• Collaboration

• Policies:
 • lateness
 • please don't request an extension unless it's an emergency!
 • grading

• Please read the syllabus carefully and make sure that you understand the policies and follow them carefully.

• Let us know if you have any questions.