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Abstract. With growing opportunities for indidually motvated agents to
work collaboratiely to satisfy shared goals, it becomes increasingly important
to design agents that can meaitelligent decisions in the comteof commit-
ments to group adfities. In particularagents need to be able to reconcile their
intentions to do team-related actions with othewnflicting intentions. W
present the SPIRExperimental system that alis the process of intention rec-
onciliation in team contés to be simulated and studied. SPIRE enables us to
examine the influence of team norms andimmental &ctors on team mem-
bers ficed with conflicting intentions, as well as théeetveness of dferent
intention-reconciliation strafges. W discuss results from piloxgeriments
that confirm the reasonableness of our model of the problem and illustrate some
of the issues wolved, and we lay the groundwk for future &periments that

will allow us to derie principles for designers of collaboration-capable agents.

1 Introduction

As a result of the ubiquity of computer netks and the phenomenal gith of the
Internet, computer systems increasingly are becoming elements of gpufipteb-

uted communities in which both people and systems acty lsigplications hee been
proposed that require members of such communitie®tk eollaboratiely to satisfy

a shared goal (Deek and Li 1998; Sen et al. 1997; Sycara and Zeng 1996). In such
situations, agents need to form teams to carry out actions, making commitments to
their teams actvity and to their indiidual actions in service of that adty. As ratio-

nal agents, team members must be able tenrakvidually rational decisions about
their commitments and plans. Wever, they must also be responsible to the team and,
dually, able to count on one anoth&hus, decision making in the coxt®f teamvork

is complex and presents a number ofwnehallenges to the delopers of intelligent
agents.

This paper focuses specifically on the decision making that self-interested, collab-
oratve agents must perform when their commitment to a groupitgatonflicts with
opportunities to commit to dérent actions or plans. &\tescribe the initial results of
an empirical imestigation into the process of intention reconciliation that agents must
perform in such situations. Theperimental fram&ork we hae developed allavs us
to explore both the ééct of team norms and policies on an agedgcisions about
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conflicting intentions and the fettiveness of arious intention-reconciliation strate-

gies that agents can adopt in thed of team norms. Our longgarm goal is to deve
principles that system designers can use in constructing coripasied agents that
participate in teams. While we recognize that no single approach can adequately meet
the needs ofwery designer in\ery type of emronment, we hope to pvale insight

into the types ofdctors that déct indvidual and team bekir and outcomes, and

thus assist deelopers werking in a ariety of domains.

2 Intention Reconciliation in the Context of Teamwork

Research on collaboration in multi-agent systems, including otk @n SharedPlans
(Grosz and Kraus 1996, 1999) and that of othersg&gue et al. 1990; Kignet al.
1994; Tambe 1997), has established that commitment to the joinitadsi a defining
characteristic of collaboration. Although theorieddtifin the vays thg encode this
commitment, the agree on its centralityAt the same time, research on rationality and
resource-bounded reasoning ¢ 1991; Horty and Pollack 1998; inter alia) has
established the need for agents to dynamically adapt their plans to accomedate ne
opportunities and changes in thevieonment. Havever, eforts in this area he
mainly focused on plan management amalion in the contet of individual plans.

Our work brings these twthreads of research together; it addresses the need for col-
laboratve agents to manage plans and intentions in multi-agentxtgnteasoning
jointly about commitments to inddual plans and commitments to group tgs.

2.1 TheProblem
Our investigation focuses on the problem of intention reconciliation that arises because
rational agents cannot adopt conflicting intentions (Bratman 1987; Grosz and Kraus
1996; inter alia). If an agent has adopted an intention to do some [aetichis gien
the opportunity to do another actigthat would in some &y preclude its being able
to do 3, then the agent must decide between d@irand doingy: it mustreconcile
intentions, deciding whether to maintain its intention tf3dw to drop that intention
and instead adopt an intention toydo

In particular we are concerned with intention reconciliation in the odnté
teamwvork, i.e., situations in which at least one of the conflicting intentions is related to
an agens commitment to a team plan. Although ‘“aelting” on a team-related com-
mitment for the sak of another opportunity may at times appear beneficial from a
purely indvidualistic perspectie, agents may need to be concerned with their reputa-
tions in the community The atent to which others trust them not toaldf may influ-
ence their long-term good. An agent must consider Hefaulting on team-related
commitments may impact its ability to collaborate in the future and, more generally
how team-relatedactors may déct its future gpected outcomes.

We assume that each of the agents is self-interested and acts invatualigi
rational mannerEven when participating in a collaboragiactvity, an agent will aim
to maximize its wn outcome. Agents are also assumed to belong to a community of
agents who periodically form teams to accomplish shared godisrddif agents in the
community may participate on tbfent teams at ddrent times, and teams magry
in both size and duration. Exn though a gen team may»ést only while engged in a
single group actity, agents in the community mayeaongerterm relationships. An



0;: system maintenance of home PC
ag:  system maintenance of large group of workstations
B: upgrade operating system
y: go to lecture by Nobel Prize winner
Individual context. You have a PC at home; you are the only user. You are commit-
ted to doing [ in the context of doing a;. A friend offers you a ticket so you can do .
Team context. You are a student employee of the systems administration group at

your university and a member of the team doing ag. You are committed to doing 3 in
the context of doing ag. A friend offers you a ticket so you can do .

Fig. 1. Intention-reconciliation scenarios from the systems administration domain, u
illustrate the diferences between inddual and team contés

agent may ant or need to participate with other agents in future groupiteegi
Depending on the situation, team members may or may nat &aoch other's identi-

ties and contribtions to the team. In thisosk, we do not address the coalition forma-

tion problem, i.e., the process by which teams are formed. Furthermore, we use the
term team to refer to a group of agents whovhdormed the intentions and beliefs
required for collaborate actvity. The termgroup refers to a collection of agents that
may (or may not) be a team.

2.2 Sample Scenarios
To illustrate the problem of intention reconciliation in the contd teamvork, we
will consider an gample from one of the domains that our empirical system seeks to
model: computer systems administration. Figure dicdles tw scenarios wolving
tasks from this domain. In both scenarios, an agent has committed to spending a cer-
tain period of time upgrading an operating systemyiggtg). It is then presented with
the opportunity to attend a lecture that occurs during that same period of timigy(acti
y). Thus, the agent must reconcile a prior intention tB dith a potential intention to
doy. In the first scenario, the prior intention is in the ceonté a purely indiidual
activity; in the second, the intention is in service of a grouvi@gti

In the indvidual contet, the agent weighs therious costs and benefits of stick-
ing with its original intention or dropping it irafor of the nev opportunity If, for
instance, the agent can do the upgfatiee net day without haing to drop aw other
commitments, then it will defgd and commit to going to the lecture. If deferring to
the net day means the agent will\eto gve up going to a mae, then it must also
decide whether it prefers the lecture to thevi@o On the other hand, if doiriyjat the
planned time is critical to some other wityi (for instance, producing a tax return that
is due that day), then the agent may decline the lecturet.tidk all these delibera-
tions, only the indiidual's outcome and future schedule matter

Similar considerations apply in the team cantéut there are additional ones as
well. Since the agertinvolvement with the systems administration group is an ongo-
ing one, it must consider hoother team members will wieits failure to honor its
commitment to d. The agent needs to consider the costs it may incur as a result of
the team's reaction to its dedting on a team-related task. In addition, the agent must
weigh team-related costs (and benefits) withviiddial factors.



2.3 Social-Commitment Policies
In interacting with one anotheand particularly in wrking togetherwe assume that
agents in the community adopt, eitheplitly or implicitly, what we termsocial-
commitment policies. These policies g@rn \arious aspects of team belw, includ-
ing both revards and penalties for indilual acts in the corté of group actiities.
For instance, themay specify such things as the disitibn of benefits from a group
actvity, the penalty structures imposed on agents whauttebn commitments to a
group actvity, and what defines aif distribution of tasks among agentseWould
assume that these policies are agreed on by a team when it formeveHd seems
more natural and f€ient to require that the community of agents embody these prin-
ciples, because in computational settings weeet agent designers willilbd multiple
agents that at dérent times come together to formfdient teams.
Social-commitment policies dédr from the “social lws” used in other multi-
agent planning ark (Shoham andéhnenholtz 1992). SociaMa proride constraints
on agents that alNo their actions to be coordinated; thesedaconstrain the ays
agentdgdo actions so that their actities do not ngatively interact. In contrast, social-
commitment policies concemational choice and the \vays a society can influence an
individual's decision making. As a result, sociadaare by their nature domain-spe-
cific, whereas social-commitment policie$eat decision making across domains and
tasks.

2.4 Incorporating Social Factorsin Decision Making

Social-commitment policies address the tension between what is best for the indi-
vidual in isolation and what is best for the team. In this paper we assume agents assess
outcomes on the basis of utility functions. Although team members may consider
group utility, they do not become group-utility maximizers. By stipulatingys in
which current decisions faeftct future utility as well as current utiljtgocial-commit-
ment policies change theay agentsaluate trade-d. The/ provide a mechanism
for constraining indiiduals so that the good of the team plays a role in their decision
making. Rosenschein and Zlotkin (1994yvé@resented similar ceantions in the
contet of nggotiation between agents.

Social fctors can also function in an additionayw If agents get part of their
utility from the team, the have a stak in maximizing group utility A larger group
benefit means a lger share for each agent, and thus gelaindvidual utility. There-
fore, when &cing a choice, it may be useful for an agent to consider not only this sin-
gle choice, bt also the lager contgt of similar choices by itself and others. While
being a “good guy” may appear suboptimal by itselergones being a good guy
when ficed with similar choices may lead to optimal outcomesveryene in the
team. The team as a whole will benefit and eachvithgal ultimately gins. For
example, in the team-contescenario of Fig. 1, an inddual member of the systems
administration team might benefit from choosing to go to the lecture. Brdrifane
in the team made a similar choice, the group utilibuld sufer severely Although
such efiects could occur within a single interaction (for instance, if the whole team
defaults to attend the same lecture), more typically thecur wer the longeterm
(different members of the team detlt at diferent times in dor of such “outside”
opportunities). Thdrownie points model described by Glass and Grosz (1999) pro-



vides one means of incorporating a good-gastdr into decision making. Policies
that encourage good guy bela are, havever, susceptible to manipulation; the “free-
rider” problem can arise. Although we recognize this aspect of good-guyide e
leave treatment of it to future avk.

3 Empirical Framework

3.1 Why Simulations Are Needed
The intention-reconcilation problem outlined abaloes not seem amenable to a sin-
gle, all-purpose, analytic solution. Igar numbers of agents, the potentialbried
capabilities of agents, compléask interactions, uncertainty about future interactions,
and incomplete information about other agents all complicate the analyaigus/
ervironmental &ctors such as the number of tasks scheduled concurrently (task den-
sity) also affect outcomes for ingliduals and teams.

We have thus constructed the SPIRE (SharedPlans Intention-Reconcilation Exper-
iments) simulation system to study thays in which @rious emironmental &ctors
and social-commitment policies can influence vidlial and team outcomes and to
examine the déctiveness of dferent decision-making strafies in the &ce of such
ervironmental and team-relatedctors. SPIRE is general enough towllss to model
agents from a Ilge set of problem domains, including thetaystems we ha Luilt
based on a SharedPlans-based architectueeatler (Hadad and Kraus 1999) and
GigAgents (Grosz et al. 1999).

3.2 TheBasic SPIRE Framework
In SPIRE, a team of agent&(,...,G,) works together on group aties, called
GroupTasks, each of which consists of doing a set of tasks (task instances). Each task
instance is of one of the typBs,...,Dand occurs at one of the timég,..., T, For
example, a Groupdsk for a systems administration team that includes both people and
software agents might consist of a week&k(with the timedT; being the 40 hours of
the work week) doing tasks of the typBs,...,Dg listed in Fig. 2. Some task-types
may hae only one instance in the week (elDg: printer maintenance); others may
have multiple instances (e.gRs:run and maintain backups).aAturrently assume
that each task type can be performed by a single agent. Agent® ri@aceime for the
tasks thg do; this income can be used in determining an agentrent and future
expected utility

A SPIRE simulation consists of a sequence of Gragkd. Sincearying either
the group actity or the team membersould male it more dificult to identify
sources of ariation in the outcomes, we currently require that the same Gaskifhe

D,: read and reply to technical questions by e-mail or in person
D, : upgrade hardware

D3: restore deleted files from backups

D4: check system security

Ds: run and maintain backups

Dg: printer maintenance (paper, toner, etc.)

Fig. 2. Examples of task types from the systems administration domain



done repeatedly by the same teamwHEe@r, the indvidual tasks within the Grougik

will not necessarily be done by the same agent each time. SPIRE considezs a gi
GroupTask to consist of a set of tasks with time constraints on the tasks and capability
requirements for agents doing the taskse. simplify the description, we will assume

that a Groupask maps to a “weekly task schedule.

In SPIRE, these weekly task schedules are represented as sets eftasijis
time>, wheretask; is to be done dtme,. At the start of each week, a central scheduler
takes the elements of the weekly task schedule and assigns them to agents to produce a
weekly task-schedule assignment (WTéﬁaach agent has a set of task capabilities
and a set of\ailable times that constrain the schedsleassignment of tasksolF
instance, only some agents (e.g., humans) might be able to check for security breaks,
and only others (e.g., sofare agents) might be able to run the backup program.

After the scheduler has assigned all of the tasks in the weekly task schedule,
agents are chosen at random aneigithe opportunity to do one of a series of “outside
offers” Outside ofers correspond to actions that an agent might choose to do apart
from the Group@sk. Each outsidefef conflicts with a taskn the WTSA, to accept
an ofer, an agent must dadilt on one of its assigned tasks. The central question we
investicate is hav different stratgies for reconciling conflicting intentions ygn a
particular configuration of social-commitment policies angirenmental &ctors)
influence both the rates at which agentsadiéfand their indidual and collectie
incomes.

The income wlues of the outside fefrs are chosen randomly from a digtitibn
with approximately the same shape as the digidh of task alues in the WTS, and
with a mean alue that rceeds the mearalue of the WTS tasks; thus agentsehan
incentive to dedult. If an agent chooses an outsidenf, it defaults on its originally
assigned tasR. If there is anailable replacement agent that is capable of dfing
the task is gien to that agent; otherwigg goes undone.

The team as a whole incurs a cost whenan agent datilts; this cost is dided
equally among the teammembers. The cost of a particularaddf depends on its
impact on the team. At a minimum, it equals a basekhg\that represents the cost of
finding a replacement agent. If no replacementafiable, the group cost is increased
by an amount proportional to thalue of the task.

3.3 Social-Commitment Policy in SPIRE

For the eperiments in this papeBPIRE applied a social-commitment pglin which

a portion of each agestweekly tasks is assigned based ow h@sponsible” it has

been wer the course of the simulation. Each agent has a rank that reflects the total
number of times it has daflted, with the impact of past weeks’ @elts diminishing

over time. The higher an agemtelatve rank, the morealuable the tasks it receis.

Since there is a greater cost to the team when tasks go undone, as @ydnts
reduced by a lger amount if it defults when no one can replace it.

1. This central scheduler is used only fon@rience. In mandomains requiring cooperadi agents, agents
would most lilkely need to ngotiate each wee&’schedule. Since this gtiation is bgond the scope of
the current SPIRE system and we wish to study aspects of team-commitment scenarios that come after
the initial schedule is made, we simplified this aspect of the problem.



SPIRE gves each agent an initial rank of 0, and it uses thewitpformula to
update an agesats rank at the end of weék

rank,(i) = (PDF)rank,(i—1) — penalty_sum,(i) . ()

wherePDF, the penalty-discountittor is a constant in the range (0, 1) that causes the
impact of prgious weeks’ defults to lessenver time, angpenalty sum is the sum of
the rank reductions that the agent incurred because of ésldeduring week

The scheduler assigistasks per agent on the basis of the agents’ ranks. If there
is more than one agent with the same rank, the scheduler randomly orders the agents in
guestion andycles through them, ging them tasks one at a time. YAremaining
tasks are assigned to agents pitlkat random. The strength of the social commitment
policy can be aried by modifying thealue ofN.

3.4 Decision Making in SPIRE

In deciding whether to datilt on a taslp so as to accept an outsiddeofy, an agent
determines the utility of each option. In thersion of SPIRE used for thgperiments
in this paperthe utility that an agent reeeis from doing an actioact in weeki
depends on twvessentially monetargétors: current income (Cl), and futusgected
income (FEI):

U(act,i) = Cl(act,i) + FEl(act,i) . (2)

Current income only considers the income from the task or outdileimigues-
tion, as well as the agestshare of the group cost if it defts. Its alue in the defult
and no-dedult cases is thus:

def(B. v). i) = val _ group_cost(f3)
Cl(def(B,y), i) = value(y) — S——=—= @)
CI(B,i) = value(B)

where deff, y) represents the action of doiphaving defwulted o3, andn is the size
of the team.

The income that an agent will reeeiin future weeks depends on its rekaiposi-
tion in future weeks’ rankings, because higrared agents rece highervalued
tasks. V@ assume that agents do notwribe ranks of other agents, nor the total num-
ber of defults in a gien week, bt only their avn relative ranking in both the current
and the préous week. Therefore, an agent can only estimate its FEI, which it does by
approximating its n& position in the agent rankings both if it defts and if it does
not defult, and estimating the assignments duld receie in each case (from the
tasks assigned based on rank). By comparingaheof these task sets, the agent can
approximate the impact that defting will have on its income in the follaing week.

An agent may alsox¢rapolate bgond the follaving week when making its FEI
estimate. Because the single-week estimate describe ébdneact and is less
likely to reflect reality for weeks that are furtherag an uncertaintydctor 6 <1 can
be used to discount FEI. Under this approach,iff the original estimate of the fol-
lowing weeks income, then the discounted estimate forktheveek after the current
one is3XF. The full FEI estimate in weekof anM-week simulation is thus:



FEl(act i) = dF(act,i) + 3F(act,i) + ... + 3F(act, i)

=5+ 8+ ...+ M )F(act,i
0+ + ..+ )F(act,i) @

-8V .
= TF(&CL I) .

Note that thedctor (1- V') decreases as the simulation progresses, reflecting the
fact that an agent has less to lose fronauléhg when there arevier weeks left in
the Groupdask.
Since our currentgeriments do not consideryatgood guy” factors, the utilities
that an agent reogis from dedulting and from not defilting in week of the simula-
tion are gven by:

U(def(B.y),i) = Cl(def(B.y), i) + FEI(def(, ).i)
U(B,i) = CI(B.i) + FEI(B,i).

Agents dedult whenU(def(B,y),i) > U(B,i).

In another paper (Glass and Grosz 1999), we model the possibility of agents being
good guys—i.e., being willing to sacrifice short-term persoma@h dor the group
good—nhy allaving agents to earn “bwnmie points” (BP) each time thieehoose not to
default, and including an agestBP level in its utility function.

()

4 Preliminary Results

In our pilot experiments with SPIRE, we made the simplifying assumptions that all
agents are capable of doing all tasks and that all agents are iniailgbte at all
times. © maximize the contrast between "socially conscious" and "socially uncon-
cerned" agents, we also made a reddyi lage number of outside fei's and imposed
relatively laige rank deductions and group costs when agerasiltied. Figure 3 sum-
marizes the settings used for the majority of thepem®ments; departures from these
values are noted in eackperiments description.

52 weeks per simulation run initial agent ranks = 0
12 agents rank deductions:
20 task types (values=5,10, ...,100) « if replacement available, deduct 1

« if no replacement available, deduct 5
discount factor on prior deductions = 0.5

40 time slots per week
10 tasks per time slot = 400 tasks per

week, of randomly chosen types group costs from defaulting:
10 tasks per agent per week assigned * baseline=(n/n-1)(max_task_value),
based on the agent's rank, the rest where n=# agents
assigned randomly « if no replacement, add (4 *task_value)
250-350 outside offers per week: d weighting factor for FEI = 0.8

e number & values chosen randomly
« possible values = task values + 95

Fig. 3. SPIRE settings used for most of txperiments in this papeDepartures from thesalv
ues are noted in eackperiments description



The results presented bel@re aerages of 30 runs that used the same parameter
settings It had diferent, randomly-chosen starting configurations (tdees of tasks
in the weekly task schedule, and the number and possihiesvof the outside fefrs).
In each run, the first ten weeks setw put the system into a state in which agents ha
different ranks; these weeks are not included in the statistics SRtR& g

4.1 Varyingthe Strength of the Social-Commitment Policy

For all of the e&periments, we empy@d the social-commitment pojicdescribed in
Sect. 3.3, in which agents are radland assigned tasks based om bfien thg have
defaulted. In our first set ofxperiments, we aried the polig’s strength by using dif-
ferent \alues for the number of tasks per agBhtassigned on the basis of rank.

Results foN = 0, 5, 10, 15, and 20 are graphed in Fig. 4.®eted, the\erage
number of dedults per week dropsfods the alue ofN increases (Fig. 4¢ft). The
N = 0 case (all tasks assigned randomly) is\egent to haing no social-commitment
policy at all. Since defulting has no é&kct on FEI in this case, agents arkeetively
“socially unconcerned” and consider only Cl when deciding whether tuldein a
task. Because outsideferfs are almost alays worth more than tasks—ven with an
agents share of the group costctored in—agents datilt on aerage wer 90% of the
time. Clearly this situation is undesirable from the point ofwief the team.

As N increases, the social-commitment pplidrastically reduces theverage
number of dedults. While this result is unsurprising, grifies that the FEI estimates
made by the agents are reasonable, and viges a concrete demonstration ofvha
social-commitment policcan afect the decision making of self-interested agents.

The impact of the social-commitment pglion both mean indidual income
(from tasks and &rs) and group income (from tasks only) iswhan the right half
of Fig. 4. Incomes are normalized byiding by the income that euld have been
earned if the originally assigned tasks had all been completgdtieincome alues
can occur as a result of the shared group costs incurred when ageals def
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Fig. 4. Effect of the social-commitment pagjion the aerage number of dafilts per week
(Ieft) and on the normalized group income and normalized mearidadi income Kight).
Incomes are normalized with respect to the amounts thaitvihare been earned if the orig
nally assigned tasks had all been completed



When all tasks are randomly assignBid=(0), the high number of dailts results
in a lage loss of group task income, as well as added group costs. Therefore, the group
task income is ery lonv (approx-2.7, where 1.0 represents whabudd have been
earned with no dafilts). Mean indiidual income is also mative, tut it is higher than
group income because of the payments that agentyeeiei outside dérs. This
result illustrates that indidually rational decisions can still lead to suboptimal out-
comes for indriduals, in this case as a result of shared group costsidudis con-
sider group costs when reconciling thewrpintentions, bt they fail to take into
account the costs thevill incur from defults by other agents.

As the \alue ofN increases and agents aleit less often, both group and ivid-
ual incomes increaseoFN = 10, 15, and 20, indidual agents do slightly better than
they would have if they had done all their assigned tasks. The “plateaigcethat
occurs in this range comes from a balance betweerathe of outside dérs and the
group costs incurred from deflting. Agents acceptyiesr outside ders (and thus lose
the tra income that such fefrs bring), loit they also incur laver group costs.

4.2 Varying the Weight Given to FEI
Our net set of eperiments dried thed value that agents use whenythweeight their
single-week FEI estimateB)to obtain estimates of FEVer the rest of the simulation
(cf. Sect. 3.4). As thealue ofd increases, so does thalwe by whichF is multiplied,
and FEI thus becomes adar part of the agents’ utilities.&\therefore xpected to see
fewer defults ad increases. The results shoin the left half of Fig. 5 confirm this.
In addition, both mean inddual income and group task incomemincrease as the
number of dedults decreases (Fig. iBght).

0 values of 0.4 and 0.5 lead to particularly poor outcomes, singaéer multi-
ply the single-week FEI estimaté)(by more than 1,v&n when there are mamweeks
left in the simulationd values of 0.6, 0.7, and 0.8 are moreeive, since for most of
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Percentage of offers leading to defaults

0 1 1 1
4 6 8 10 12
Task density (number of tasks per time slot)

Fig. 6. Effect of task density on the percentage of outsider®that lead to defilts.
There were 12 agents throughout, so 12 tasks/time slot is the maximum density

the simulation the multiply F by factors of about 1.5, 2.3, and 4, resp&tyi (see the
last line of equation (4)).

4.3 Varying the Task Density
The last of our pilotxperiments gried an evironmental &ctor the number of tasks
scheduled in each time slot (task density). Sincegelaask density mals it more
difficult on average for a defulting agent to find a replacement, and since the group
costs and indidual rank penalty are Iger when there is no replacement, wpexted
that there wuld be fever defults as task density increasedwéeer, our results (Fig.
6) do not confirm thisypothesis. Instead, as task density increases, there is a gradual
increase in the percentage of outsidefars for which dedults occurred, with the
exception of a drop that occurs at the maximum density of 12 tasks per time slot (with
12 agents). This increase occurs despitedbethat the percentage oferk for which
no replacement isvailable also increases as the task density increaabke ().

We were puzzled by these results, until we realized that task densityfalds af
the \alues of the tasks assigned based on rank, and thus the FEI estimates made by
agents. Br each of the task densities, we consistently scheduled 10 tasks per agent
based on rank (120 tasks in all), and the tasks assigned during this stage of the schedul-

Table 1. Effect of task density on the@rage percentage of outsidéeo$ for which no replace
ment agent is\ailable

Offers with no

Tasks density replacement

4 0.00%
6 0.02%
8 2.06%
10 39.88%

12 100.00%
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Fig. 7. Effect of task density on theverage of the agents’ estimated losses in futu
expected income as a result of aeffing on an assigned task

ing were alvays the most aluable tasks still ailable. Havever, as task density
increases, so does the total number of tasks, and thugdi@ge) the number of tasks
of each type. This means that the 120 tasks assigned according to rank tetedato ha
increasingly narne range of @lues as task density increases. As a result, thet ef
rank on the tasks an agent reesi—and therefore on its FEI—is lessened. In the
extreme case, if there were more than 120 tasks with the higilast an agerd’rank
would hare no efect on the alue of the tasks it reasd.

To confirm this gplanation, we analyzed data we collecteghrding the agents’
estimates of h@ much FEI thg would lose by defulting. We found that as task den-
sity increases, thevarage estimate of the drop in FEI caused bypul#hg decreases
(Fig. 7), suggesting that the tasks assigned based on rank are indeedaona more
and more homogeneouslglued pools of tasks. In the maximum density caseattte f
that replacements are veg available maks the werage cost of dabilting lage
enough to outweigh thisfett.

This eperiment illustrates v a system lik SPIRE can uneer unepected
interactions between parameters, enabling agent designers to find themniceaaind
adjust their designs accordingly

5 Reéated Work

Kalenka and Jennings (1999) proposees& “socially responsible” decision-
making principles and empiricallkamine their d&cts in the contd of a warehouse
loading scenario. Our avk differs from theirs in three ays: (1) their policies are
domain-dependent and not decision-theoretic; (3) tleenot \ary ewvironmental &c-
tors; and (3) the do not look at conflicting intentions or agentsadding on their
tasks, lt at whether agents choose to help each.other

Sen (1996) also considers decision-making sji@sethat encourage cooperation
among self-interested agentsit his work focuses on interactions between pairs of
individual agents, rather than those between arithehl and a team.



There is also a significant body of economics literature on rational choice and
intention reconciliation (lannaccone 1992; Hollander 1990; inter alia) that space limi-
tations preclude our veewing here.

6 Conclusions

We hare developed an empirical fram@rk that enables us to simulate the process of
intention reconciliation in team comts and to gamine the impact of ironmental
factors and team norms as well as tHieatif’eness of arious decision-making strate-
gies in the &ce of thesexternal fctors. Our initial gperiments confirm the reason-
ableness of our model and illustrate some of the issuelvé@ in the problem we are
trying to address.

In a related paper (Glass and Grosz 1999), westitate agents who consider
both their monetary interests and their reputation as team members when reconciling
conflicting intentions. In future ark, we intend to ivesticate the follaving classes of
problems within the SPIRE framerk: (1) the influence of information about other
team members on the agents’ bgbg (2) heterogeneous communities, including
agents with dferent capabilities and timevailabilities, and agents who embody dif-
ferent decision-making strafies (e.g., some may be good guys, others not); (3) teams
with larger numbers of agents; (4) altermatsocial-commitment policies; (5) alterna-
tive intention-reconciliation strajes; and (6) the possibility of agents modeling and
adapting to the team beher of other agents.

Since intention reconciliation in realistic multi-agent catgeis an gtremely
comple problem, we bele a system lig SPIRE is essential for obtaining the
insights needed to design collaboration-capable agents (Grosz et al. 1999). Such agents
will function not merely as toolsub as problem-solving partnersprking as members
of heterogeneous teams of people and comjiateed agents in our increasingly inter-
connected computing einonments.
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