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Abstract

Research on resource-bounded agents has established that
rational agents need to be able to revise their commitments
in the light of new opportunities. In the context of collabo-
rative activities, rational agents must be able to reconcile
their intentions to do team-related actions with other, con-
flicting intentions. The SPIRE experimental system allows
the process of intention reconciliation in team contexts to
be simulated and studied. Prior work with SPIRE exam-
ined the effect of team norms, environmental factors, and
agent utility functions on individual and group outcomes
for homogeneous groups of agents. This paper extends
these results to situations involving heterogeneous groups
in which agents use different utility functions. The paper
provides new illustrations of the ways in which SPIRE can
reveal unpredicted interactions among the variables
involved, and it suggests preliminary principles for design-
ers of collaborative agents.

1 Introduction

Computer systems increasingly are elements of com-
plex, distributed environments in which human and com-
puter agents interact. In applications that require agents to
work collaboratively to satisfy a shared god [3, 19, 21,
inter alia], agents form teams to carry out actions, making
commitments to their teanm's acivity and to their individual
actionsin service of tha adivity. Agerts in these environ-
ments may opegate on bédf of individuds and aganiza-
tions with different interests, and thusneed to behave as
rational, self-motivated individuals Thee aents are dso
resoura-bounde and must adapt ther commitments and
plansin the light of changing circumstances. However, col-
laborative agents also need to be able to count on each
othe. Therefore team narms and oher means may be
needed to ercourage agents to consider the good of the
group when making cecisions abou their commitments|2,
5, 20]. As aresult, decision-making in the context of col-
laborative activity presents a nunber of challenging prob-
lems to designers of coll aborative multi-agent systems.
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This pape focuses specifically onthe decision making
that self-intereded, collaboratve agents must perform
when their commitment to a group activity conflicts with
opportunities to commit to different actionsor plans. We
present the results of experimentsusng the SPIRE smula-
tion system, an experimental framework that alows us to
simulate and study this type of intention recondliation by
collaboraive agents. In earlier work [5, 20, we usd
SPIRE to examine the effect of team norms, environmental
factors, and agent charaderistics on the decisions and out-
comes of members of homogeneous groups of agents. In
this pgper, we examine the outammes of simulationsinvolv-
ing larger, heterogeneous groupsof agents who u differ-
ing uility fundions to assess their opfons and we suggest
principles for designers of agents and ajent environments
based on the results.

2 Intention reconciliation and collabor ation

Research on wllaboraion in rulti-agent systems [6, 7,
13, 15, 22] has established that commitment to the joint
activity is a defining characteristic of collaboration.
Althowgh theories differ in theways they encodethis com-
mitment, they agree on is centrality. At the same time,
research on rationdity and resource-bourded reasoning [4,
10, inter dia] has established the need for agents to dyram-
ically adapt their plans to accommodae newv oppotunities
and changes in the environment; sometimes, commitments
need to be droppeal. However, efforts in this area have
mainly focused on plan management and evolution in the
context of individud plans. Our work brings these two
threads of research together. It addresses the need for cd-
laborative agents to manage plans and intentions in multi-
agent conexts, reasoning jointly abait commitments to
individual plans and commitments to group activities.

Our investigation focuses on the problem of intention
reconciliation that arises because retiond agents cannot
adoptconflicting intentions[1, 6, inter dia]. If an agent has
adoptked an intention © do ©me action B and is given the
opportunity to do anothe actiony that woud in some way
preclude its bang able to do 3, thenthe agent must decide



between doing 3 and doing y. It must reconcile intentions,
deciding whether to maintain its intention to do (3 or to
replace that intention with an intention to do y.

In particular, this paper examines the problem of inten-
tion reconciliation in the context of collaborative activities,
i.e., situations in which at least one of the conflicting inten-
tions is related to anagent’s commitment to a team plan.
Much of the prior work on ayent collaboration and negatia-
tion [14, 16] has assumed that commitments to collabora
tive activity are binding, and work in game theory has
shown that it is posible to enforce this asumption by
imposng harsh enoughpunishments when agents bresk a
commitment. We are interested in situations in which some
amount of ddaulting is acceptable. For example, in the
domain of automated systems administration (see [20]), it
might bereasonable to dlow an agent committed to per-
forming afilesystem backup to default on that commitment
so that it can assist with crash recovery on another system.
To build collaboraton-cgpable agerts [8] that interact in
environments where defaulting is possible, agent designers
need to consder the problem of intention recondliation in
colaborative cantexts.

Intention reconciliation in team contexts requires tha
agents weigh the purely individud costs and bendfits of
their decisionswith team-related concerns We assume tha
agents have relationdhips that persist over time, and thus
the extent to which egerts are trused nat to default may
influence their long-term good. Defaulting on a team-
related commitment for the sake of another opporunity
may at times appear bendicial from a purdy individualis-
tic perspective, but an agent must consider the impact of
such behavior onits ability to collaborate in the future and,
more generally, on its future expected outcomes. In earlier
work [20], we describe our asumptions about agents in
greder detil, and we pesent scenaios tha illustrate the
issues involved in this type of decision-meking.

In agiven society of agents, thegraup-rdated impect of
defaulting ¢ems from what we term social-commitment
policies [20], domein-independent policies that govern var-
ious aspects of collaboraion, including both revards and
pendties for individud acts in the context of group &ctivi-
ties. By dipulating ways in which aurrent decisions affect
both aurrent andfuture utility, social-commitment policies
charge the way agents evaluate trade-offs. They provide a
mechanism for condraining individuals so that the goad of
the team plays a role in their decision meking. Section 3
describes onesuch social-commitment policy.

Socid factors can dso function in an additiond way. If
agerts get part of their utility from the team, they have a
stake in maximizing group utlity. Therefore, when facing a
choice, it may be useful for an agent to consider not only
this single choice, but also the larger context of similar
choices by itself and ohers. While beng a“good guy” may

apper subopimal by itself, everyonés beng a good gquy
when faced with smilar choices may lead to bedter out
comes for everyonein the team. Our experimental frame-
work uses the brownie points model developed by Glass
and Grog [5] to incorporae this type of condderation into
decision making, alowing usto gudy its effect on out
comes, as well asits susceptibility to manipulation.

3 The SPIRE framewor k

The SPIRE smulation system dlows us to study the
impact of environmental factors, social-commitment poli-
cies, and agent utility fundions on individual and graip
outcomes The many variabes involved and the often
unexpected ways in which they interact make a system like
SPIRE useful for testing hypotheses, uncovering rdation-
ships, and ganing indght ino the issues involved in the
intention-recondliation probdem. In the following para
graphs we present an overview of the system. More details
can befound in our erlier work [20].

SPIRE modds Stuations in which a team of agents
works together on graip ativities, each of which consists
of doing aset of tasks. We currently assume that each task
lasts one ime unit and is a sngle-agent adion, i.e, that it
can be peaformed by an individud agent. Agents receive
income for the tasks tha they do; this income can beused
to determine an agent’s current and futue expected utility.

A SPIRE smulation run condsts of a single group
activity donerepeatedly by the same team, because varying
either the groy activity or the team members would
obscure sources of variationin the outcomes. However, the
individual tasks within the activity will not necessarily be
done by the same agents each time. To smplify the
description, we assume that the groy ectivity mapsto a
“weekly task schedule” (WTS). At the gart of each week, a
central scheduler takes the elements of this weely task

schedule and assigns them to agents.®

After the scheduler has assignead dl of the tasks, agents
are chosen at random and gven the chance to do ore of a
saies of outside offers. Outside offers correspond D
actions that an agent might choose to do apart from the
group ativity. Each outside offer conflicts with a task in
the WTS; to accept an offer, anagent must default on one
of its assigned tesks. The values of the outside offers are
chosen randonly from a digtribution tha gives agents an
incentive to ddault. If an agent chooss an outside offer, it
defaults on its assignad task B. If there is another agent
capable of doing 3 and available at the time for which it is
scheduled, the task is given to tha agent; otherwise, 3 goes
undone

1. This central scheduler is used only for convenience. In many domains,
agerts would likely need b negatiate eab week’s schedule. Becase
negotiation is not our focus, we simplified this aspect of the problem.



The team as a whole incurs a cost whenever an agent
defaults; this cost is divided equdly among theteam's
members. In addition, SPIRE currently applies a social-
commitment policy in which a portion of each agent's
weekly tasks is assigned based on its behavior over the

coure of the smulation. Each agent has a score? that
refl ects the total nunber of timesiit hes defaulted, with the
impact of past weeks defaults diminishing over time. The
higher an agent’s relative score, the more valuabe the
tasks it receives. Both the group ®sts and scoreredudions
are larger when no replacement agent is awvailable.

The scheduler assignsN tasks pea agent on the basis of
the aents' scores we refer to these tasks as score-
assigned tasks. The <heduler gives each agent the most
valuable tasks remaining in the pool of unscheduled tasks.
The agnt with the highest score receives the N highest-
valued tasks that it can perform (givenits cgpabilitiesard
the times when it is available), the agent with the second-
highest scorereceives thenext N tasks, and soon. If there
is more than one ayernt with the same score, the sheduler
randamly ordes the agents in question and gycles through
them, giving them tasks one at atime. After all agerts
receive N tasks, the remaining tasks are assigned to agents
picked at random. The grength of the social commitment
palicy can bevaried by modifying the value of N.

4 Decison makingin SPIRE

In deciding wheher to ddault on atask B so as to
accept an outside offer y, anagent deerminesthe utility of
each option. SPIRE currently provides for upto three fac-
tors to beconddered in utility cdculations curentincome
(ClI), future expected income (FH), and bravnie paints
(BP). Below we review eech of themin turn.

4.1 Current and future expected income

Current income only condders the income from the
task or ousside offer in question, as well as the agent’s
share of the group ost if it defaults. Future expected
income represents the aents egimate of its income in
future weeks, based on ts position in the rankings when
the agents are ordered according to their scores. The agnt
first goproximates the impact tha deaulting will have on
one week of itsincome. Section 42 describes this estimate
in more deail. The agent then extrapolates beyond that
week to compute a nore complete egimation, usng a dis-
court factor & < 1. Discounting rdlects agents’ increasing
uncertainty about ther predictions [20]. For the experi-
mentsin this pger, we assume tha agents are also uncer-

2. In prior work [5, 20], we refer to this score as the agent’s rank. Using
score avoids confusion with the agen’s ranking, its position relative to
the oheragents when hey are oderd accaoding © their scores

tain about the duraion of their coll aboration, and terefore
use the infinite-harizon vesion of the FEI formula
described by Glass and Grog [5]. If F is the esimate of
next week’s income and o is thediscount factor, then:

_ 2_ .3 _ o
FEI(F) = OF +3°F+3 F+.. = El—S%b:

We refer to the factor in paentheses as the FEI weight.

4.2 Estimating theloss innext week’s income

An agent estimates its potential loss in income during
the following week by approximating its new position in
the rankings both if it defaults and if it does not default,
and determining the score-assigned tasks it would receive
in each case. There ae many factors that affect the agent’s
actual postion in the rankings, including the behavior of
other agents and the offers that the agert receives later in
the same week. To modd stuations in which agents have
only limited information about each other, we assume that
agents do notknow the scores of other agents nar the total
number of defaults in a given week, but only thar own
ranking in both the current and theprevious week. Given
the difficulty of estimating an agent’s ranking using such
limited information, and the fact that it is unclear whether
more sophisticated methodswould lead to beter estima-
tions we adoptd thesimple approah described bdow.

An agent beginsits estimation by usng its previousand
current weeks' rankings to gproximate the number of
agens who defaulted last week. For exanyple, if anagen’s
postion in the rankings improved and it did not default
last week, it asumes that some of the agents who were
previoudy above it in the rankings must have defaulted. It
caries this esimate over to the aurrent week, assuming
that the ssme number of agerts will again default. Using
this edimate, the aert creaes four agent equivalence
clases. (1) the aents curently above it who will not
default, (2) the agents above it who will default, (3) the
agents bdow it who will not default, and (4) the agents
bdow it who will default. The agent adds itself to the

equivalence classes using the following rules:3

(@) To gpproxmate wha will hgpen if it does not
default, it addsitself to the second dass.

(b) To goproximate wha will hgppen if it defaults
when there is an agent available to replace it, it
addsitself to a new class beween the second and
third classes.

(c) To goproximate wha will hagppen if it defaults with
no replacement, it addsitself to thethird class.

It then calls thescheduler once to compute thevalue of
its score-assignad tasks if it does not default (Fpo.-gef »

3. These nles may urderestimate the impact of defaulting, snceagens
can drop evenfurther in the mnkingswhenthey default.
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Figure 1. Possible estimates of FEI loss (using a
discount factor & of 0.8) for an agent that was ranked
seventh out of twelve agents in the previous week.

obtained using the classes formed from rule &), and a sec-
ond time to determine the value of its score-assigned tasks
if it does default (F4ef , Using the classes from (b) or (c)).

The agert’s edimate of its one-week income loss from
defaulting Fpo-def — Fger) thus dependson five factors its
previous and aurrent rankings, whether it defaulted last
week, whether there is anagent available toreplace it, and
the nunber of agerts with which it is collaboating (since
this affects the sizes of the equivalence dasses). The esti-
mated loss of income can vary greatly, as Figure 1 shows.
Agents occasiondly estimate an income loss of 0, which
means that factors such asthe strength of the ocial-com-
mitment policy and the value of the FEI discount factor
will not affect their decisions. We experimentally deter-
mined that the awerage adual income loss in these Stua-
tions is 20, and thus we modified the decision-making
code %0 that income-loss edimates of O are incressed to
20. As a result, we obtdned somewha fewer defaults in
this pgper’s experiments than we did in our earlier work.

In the current gystem, an agent’s estimation doe not
consider the nunmber of times that it has already defaulted
in the current week. Although this smplification ignores
thefact that agents should exped to drop morein the rank-
ingsthe more they default, it saves condderable computa-
tion by allowing agents to reuse their estimations avoiding
repested, expensve calls to the scheduler. We plan to ex-
plore estimation methodsthat condder prior defaults with-
out requiring repested scheduler invocations. However,
given the inherent difficulty of making these estimates and
the fact tha our appraach has been shown to respond rex-
sonably to changes in the social-commitment policy [20],
the estimates seem adequae for our arrent purposes.

4.3 Non-monetary factor: brownie points
In addition to being concerned about its income, an

agent may aso derive utility from beng a “good gy.”
Glass and Grog’s brownie point modd captures this

aspect of agents’ utilities [5], providing a measure of an
agent’s sense of its reputation & a resporsible collabora
tor. Agents begin asimulation with anidenticd, nonzero
number of brownie points When they default, agents lose
brownie points In addition, agents gain brownie points
when they choo% not © ddault, reflecting the fact that
they are doing whd is god for the grop. Because an
agent’s reputation is affected not orly by whether or notiit
defaults, but aso by the context of the decision, the
changes in brownie points take into accourt the values of
the task and offer involved in the decision. If an agent
defaults on a low-valued task, its brownie points are
reduced less than if it defaults on ahighvalued task; if it
defaults for the sake of a high-valued offer, its brownie
points are affected less than if it defaults for alow-valued
offer. Similarly, the increases in brownie points when
agens choose not to default are geaer for low-valued
tasks and for high-valued offers.

Note tha brownie pointsrepresent an agent’s own eval-
udion of its reputation as a respongble collaboraor, not
the perception d other agents. This factor is not a social-
commitment pdicy: it does notdirectly affect the value of
the tasks that an agert recdvesin the curent cdlabora
tion. Raher, bravnie points alow agents to incorporae a
measure of social consciousness in their decisions. In
informal terms, socially conscious agernts may make deci-
sions that are locally, individudly subopimal, because
doing so enables the groupas awhde—and pehaps, indi-
rectly, theagent itself—to bebeter off. While it might ke
possible to express this dement of an agent’s utility in
mondary terms, using the non-nondary measure
described above is smpler and more intuitive.

4.4 Combining the factors

To compare the overall utility of an agent’s options the
Cl ard FEI values for each option are mombinedto give the
total edimated income (TEI). Next, the TEl ard brownie
point (BP) values are normelized: the default and no-
default TEI values, TEl s and TEl o g respectively, are
each divided by max(TEl e , TElo.qer), and the default
and no-defaut BP values (BPyg ard BPo ge) are simi-
larly adjusted. Findly, the nomalized values are weighted
based on theagent’s social coniouness:
Uger = TEIweight x normTEl g + BPweight x normBPyes
Uno-def = TEIweight x normTEl o gef
+ BPweight x normBP,_ e
where TEIweight and BPweight sum to 1.
Agents ddfault when Uges > U o qef- Agents who do no

use brownie pants (corresponding to a BPweight of 0)
may compare their unnormalized, unwaghted TEI values.



52 weeks per simulation run

20 task types (values=5,10,...,100)

40 time slots per week

5n/6 tasks per time slot (n = # of agents),
of randomly chosen types

10 score-assigned tasks per agent
per week, the rest assigned randomly
5t/8-7t/8 offers per week (t = # tasks):
* number & values chosen randomly
« possible values = task values + 95

Figure 2. SPIRE settings used for most of the experiments in this paper.

5 Experimental results

In the following experiments, we make the simplifying
assumptions that all agents are capable of doing all tasks
and that all agents are initially available at al times. To
maximize the contrast between different settings, we con-
figured most of the experiments to make a large number of
outside offers (see Sect. 5.3 for a discussion of how this
affects the results). Figure 2 summarizes the settings used
for most of the experiments; departures from these values
are noted in each experiment’'s description. Severd of the
settings, including the nunber of task types and the num:
ber of time slots, were chosen to modd the work week of a
systems administration team. Other settings were chosen
based on pror experimentation. For example, the number
of tasks per time dot was chosen so that there would bea
significant nunber of outside offers for which noreplace-
ment agert is available.

The results presented are aweragesof 30 runs that used
the same paameter settings but had different, randomnly-
chosen starting configurations (the values of tasks in the
weekly task schedule, and the number and posible values
of the outside offers). Error bars onthe graphs indicate the
end points of 95% confidence intervals. In each run, the
first ten weeks serve toput the s/steminto a gate in which
agents have different scores; these weeks are ot included
in thestatistics SPIRE gahers.

5.1 Heterogeneity in the weight given to FEI

In this set of experiments we conddered heterogeneous
groupsof agents who use different & values to weight their
edimates of F, their income in the following week (seeeg.
1). Earlier [20], we showed tha increasing 6 in honoge
neous groups of agents leads to fewer deaults and to
increased individual and goup hcomes. In the current
experiments, some agents use a o value of 08, othersa o
of 0.95. All of then adso use brownie points with a
BPweight of 04 (a setting tat falls in the opimal range
determined by Glass and Grog [5]). We used a total of 60
agerts, and we variedthe percentage of agentsin eachsub-
group, considering cases in which none, 1/12 4/12, 6/12,
8/12 11/12, and dl of the agents use 6 = 0.95, and the rest
use 6 = 0.80. Figure 3 diglays theresults.

In general, agents who put a highe vaue on fuure
expected income default less than agents who do not value

future income as much. For agents who value FEI highly,
expected gans from outside offers are often cutweighed
by estimates of future losses from defaulting. In fact, if
such agents give enoughweight to FEI, they may never
default, and this phenomenon @n beaccentuaed by inac-
curate estimates on the part of the agerts.

Because the agents who use 6 = 0.80 (for an FEI weight
of 4) default more often than agents who ue 6 = 0.95 (for
an FEl weightof 19), they tend o occupy the bottom rank-
ings Therefore, they receive lower valued score-assigned
tasks, and ouside offers become more attractive. In addi-
tion, brownie-point computaions have less influence on
agents who are at the bottom of the rankings. The BP loss
from defaulting ona task is qualrétic in the task’s value
[5], so agents who receve lower-valued tasks compute
smaller BP losses The 08-delta agents thus enter a cycle
of more and more defaulting as a Smulation progresses:
defaulting moves them down in therankings, and haring a
lower ranking makesthem more likely to default. As the
number of 0.80-cdkelta agents decreases, alarger percentage
of them are found a the batom of the rankings and thus
both of the effects mentioned aove are increased. There-
fore, the 0.8-ddta agents default more frequently as they
become a smaller percentage of the group.

The impact of the changing subgroup sizes on both
mean individud income (from bath tasks and autside
offers) and subgoup in@me (from tasks only) is shown in
the right hdf of Figure 3. The normalization factor used
for these results differs from that used in our earlier work.
The prior work divided an agent’s income by the income
that the agent would have earned if all of its originally
assigned tasks had been done (its base income). This nor-
malization fector workswell for homogeneous groupsof
agens, but it is problematic when dealing with heeroge
neous groups In paticular, in heerogeneous grours,
agents (and subgoupg tha are assigned predominately
low-valued tasks will have low base incomes and thusarti-
ficially high nornelized incomes. Hence, for the norml-
izations reported in this pgper, we compute thetotal of the
tasks assigned to the top-ranked agert in each week. This
total (which no sngle agent may have as its actual base
income) is used to normalize the income of every agent.

The results show tha agents who putless weight on
their future income do tetter as individuds than agents
who weght it more heavily. The extra income from the
outside offers that they accept more than compensates for
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Figure 3. Outcomes for agent subgroups as the percentage of agents placing a higher value on
future income is increased. The percentage of defaults (/eff) and the normalized individual and
group incomes (right) are shown for each subgroup. Section 5.1 details the income normalization.

their loss of future income and their share of the group
costs. This result holds even when the homogeneous-group
results (the 0% and 100% cases) are compared. While our
earlier results showed that increasing 6 from 0.4 to 0.8
leads to increasing individual incomes in homogeneous
groups, these new experiments indicate that increasing 6 to
values close to 1 leads to less individual income, even
when agents are homogeneous. Thisresult is similar to one
from Glass and Giosz's earlier work on brownie points [5],
which showed tha a modeate level of social consious
ness (i.e,, amoderate BPweight) is beter from the individ-
ual perspective, since otherwise agents turn away eventhe
most highly-valued outside offers.

The 08-delta agerts also see an increase in individual
income asthe percentage of 0.95-delta agents increases.
The 0.8-ddta agents benefit from the fact that thar more
responsble colleagues keep the groyp costs low, and as the
number of 0.%-delta agents increases, this effect only
increases. The resulting digarity in individud incomeis an
exanple d the “free-rider” problem, in which agents can
afford to be less respongble in the presence of more
responsble collaboraors Designers of agents and ajent
environments need to take the possibility of this type of
free-rider behavior into account

Although the0.8-delta agents do beter as individuals,
their income from grop-activity tasks doneis much lower
than that of the 0.95-delta agernts because they have
defaulted on nore tasks. Moreover, the overall group
income, which is effectively a weighted average d the two
subgroup ncomes, increases as the nunmber of 095-ddta
agents increases (Fig. 4), showing that group outomes are
better when more agents weight future income heavil y.

5.2 Heterogeneity in social consciousness

We next conddered heterogeneous groupsof agents in
which some of the agents use brownie points and some do

not. We again used an overall group size of 60 agerts, ard
we varied the percentage of the agents in each subgoup,
congdering ases in which none 1/12,4/12,6/12,8/12,11/
12, and dl of the agents use brownie points and the rest do
nat. All of theagents use an FEI discount factor, 8, of 0.8.
The results are shown in Fgure 5.

As expected, the agents who use brownie points default
less often than thosee who do not (Rg. 5, left). The dffer-
ence between thetwo subgloupsremains more or less the
same as the number of BP agents increases. This approxk
mately condant difference in defaulting contrasts with the
mixed-ddta experiments in the previous section, in which
the 0.80-celta agents defaulted more frequently as they
becane a gnaller percentage of the overal group. In the
mixed-ddta experiments, 0.95-celta agents tend dways to
be ranked above 0.80-cklta agents, since they default so
infrequently. In the mixed-BP experiments on the other
hand, the two subgroups are less segregated in the rank-
ings The no-BP agents can thusavoid thecycle of increas-
ing defaults tha &fects the 0.80delta agents as they
become confined to the lower rankings (cf. Sect. 5.1).
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Figure 4. Task-only income for an entire group of heter-
ogeneous agents as the percentage of agents placing a
higher value on future income is increased. Section 5.1
describes the income normalization.
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Figure 5. Outcomes for agent subgroups as the percentage of socially conscious agents (see
Sect. 4.3) is increased. The percentage of defaults (left) and the normalized individual and group
incomes (right) are shown for each subgroup. Section 5.1 describes the income normalization.

The two subgroups exhibit small but statistically signifi-
cant differences in normalized individua and group
income (Fig. 5, right), where the normalization factor
described in Section 5.1 was used. The no-BP agents again
do better asindividuals but worse as a group, and the group
differences are more pronounced. This suggests that the
free-rider effect is less of an issue when the difference in
defaulting between the two types of agents is less pro-
nounced, and that agent designers can improve group out-
comes without sacrificing individua gains by building
agents with a moderate amount of social consciousness.

5.3 Effect of the number of outside offers

In both sets of heterogeneous-agent experiments, agents
who default more do better as individuals. One reason for
this involves the large number of outside offers that were
made in these experiments, between 5/8 and 7/8 of the
number of group-activity tasks. Agents who default more
frequently are thus able to gain a significant amount of
extra income from the outside offers that they accept.
When fewer outside offers are made, defaulting more often
can actudly lead to a smaller individual income. For exam-
ple, when the number of outside offers is fixed at 10% of
the number of tasks, the normalized mean individual
income of the no-BP agents is only 0.935 when 11/12 of
the agents use brownie points, while that of the BP agents
is 0.950. We plan to investigate the effect of the number of
outside offers more fully in future work.

6 Related Work

Kalenka and Jennings [12] propo® several “socially
responsble” decision-meking prirciples and examine their
effects in the context of awarehouse loading scenario. Our
work differs from theirs in two main ways: (1) their poli-
cies are domein-dependent and not decision-theoretic; (2)
they consider agerts choosing whether to help each other,

not agents defaulting on heir team commitments. Sen [18]
also considers decision-meking drategies that encourage
coopeation among <lf-interested agents, but his work
focuses on interactions between pairs of individuals, rather
than those baween an individud and a team.

Sandhom et d. [17] study a mechanism built into con-
tracts between self-motivated agents that allows for decom-
mitment throughthe payment of apendty. They present an
algorithm for constructing optimal contracts and for deer-
mining what anagent should do when it receivesanoutside
offer, given the contract. They anayze single interactions
between two or three agents. We study the problem of
intention recondiliation in an ongoing wllaboraion of a
large set of agents, in which no eplicit arrangement for
defaulting @n be made. Furthermore, we use groyp noms
to discourage agents from defaulting.

Xuan and Lesser [23] present a framework for agents to
negotiate their commitments. Similar to Sen, they focus on
interactionsbeween pdrs of individual agents and assume
that the details of a commitment can be modified in away
that is satisfactory for bath agents.

There is aso a significant body of economics literature
onrational choice and intention recondliation [9, 11, inter
aia) that space limitationspreclude our reviewing hee.

7 Conclusions

The PIRE enpiricd framework erebles us to simulate
and gudytheproaess of intention reconciliation in collabo-
rative contexts, examining the impact of environmental
factors, team norms and agent utility functionson indvid-
ud and group outomes. The results of our peiments
demondrate that, in heterogeneous settings less resporsi-
ble agnts do better asindividuals when there are alarge
number of outside offers. However, thdr share of the group
income from tasks alone is much lower than tat of more
responsble agents. In addition, the overall groupincomeis
better when more of the agents are responsible. Therefore,



agent designers would do well to ensure that agents have
nearly equal levels of responsibility to the group, both to
obtain better group outcomes and to prevent less responsi-
ble agents from taking advantage of more responsible
ones. It is unclear what the ideal level of responsibility to
the group should be: as our results involving 0.95-delta
agents show, having a utility function that effectively pre-
vents you from defaulting leads to extremely low individ-
ual outcomes. Agent designers could potentially use
SPIRE to determine utility-function settings that lead to
acceptable outcomes in agiven domain.

There are many possible mechanisms for achieving
greater uniformity in agent responsibility, including
increasing the strength of the social-commitment policy.
We plan to investigate these mechanisms in future work.
One challengeisto achieve uniformity without compl etely
sacrificing the ability of agents to default or the autonomy
of agent designers.

Other classes of problems that we hope to investigate
using SPIRE include: (1) the influence of information
abou other team members on ayents’ behavior; (2) hetero-
geneouscommunities where agents have different capabil-
ities ard availabilities (3) aternative social-commitment
policies; (4) theeffect of decreasing the nunber of outside
offers on theoutcomes of less responsible agents in heter-
ogereaus communities; and (5) the possibility of agens
modding and adapting to the behavior of otter agents.

Because intention recondliation in relistic multi-agent
contexts is an extremely complex problem, we bdieve a
system like SPIRE is essential for obtaining the insights
needed to design collaboration-cgpable agents [8]. Such
agents will function not merely as tools but as prablem-
solving patners, working a members of heerogeneous
teams of people and computer-based agents in our increas-
ingly interconnested computing environments.

References

[1] Bratman, M.E. 1987. Intention, Plans, and Practical Reason.
Harvard University Press, Cambridge, MA.

[2] Cadgtelfranchi, C. 1998. Modeling social action for Al agents.
Artificial Intelligence, 103:157-182.

[3] Decker, K. and Li, J. 1998. Coordinated hospital patient
scheduling. In: Proc. of ICMAS-98, pp. 104-111.

[4] Doyle, J. 1991. Rational belief revision. In: Proc. of the Sec-
ond Intl. Conference on Knowl edge Representation and Rea-
soning, pp. 163-174.

[5] Glass, A. and Grosz, B.J. 1999. Socially conscious decision-
making. In: Proc. of the Fourth Intl. Conference on Autono-
mous Agents (to appear).

[6] Grosz, B.J. and Kraus, S. 1996. Collaborative plans for com-
plex group action. Artificial Intelligence, 86(2):269-357.

[7] Grosz, B.J. and Kraus, S. 1999. The Evolution of Shared-
Plans. In Wooldridge, M. and Rao, A., editors, Foundations
and Theories of Rational Agency. Kluwer Academic Publish-
ers, The Netherlands, pp. 227-262.

[8] Grosz, B.J., Hunsberger, L., and Kraus, S. 1999. Planning and
acting together. Al Magazine, 20(4):23-34.

[9] Hallancer, H. 199. A soda exchangeappoachto voluntary
coopeation. American Economic Review, 80(5):1157-1167.

[10] Horty, J. andPolack M.E. 1998. Option evaluation in con-
text. In: Proc. of the 7th Conference on Theoretical Aspects
of Rationality and Knowledge, pp. 249-262.

[11] lannacone L.R. 199. Sarifice and stgma: reducing free-
riding in cuts, communes, and cher cdlecives. Journal of
Political Economy, 100(2):271-291.

[12] Kaenka S.and Jennings, N.R. 199. Socially resporsible
decision meking by aubnamousagens. In: Proc. of the Fifth
Intl. Colloquium on Cognitive Science, pp. 153-169.

[13] Kinny, D., Ljungbeg, M., Reo, A.S., Smerber, E., Tidhar,
G., and Werner, E. 199%. Planred team adivity. In Cadel-
frarchi, C. ard Werner, E., eds, Artificial Social Systems
(LNAI-830), pp. 227256 Spiinger Verlag

[14] Kraus, S, Wilkenfeld, J, ard Zlotkin, G. 1995. Multiagent
negatiaon unde time condraints Artificial Intelligence,
75(2):297-345

[15] Levesque H., Colen, P and Nunes J. 190. On acting
together. In: Proc. of AAAI-90, pp. 94-99.

[16] Ro®enschein, J.S.and Zbtkin, G. 1994. Rules of Encounter:
Designing Conventions for Automated Negotiation among
Computers. MIT Press, Cambridge, MA.

[17] Sandholm, T., Sikka, S, ard Norden S. 199. Algorithms
for optimizing leveled commitmert contrads. In Proc. of
IJCAI-99, pp.535540.

[18] Sen, S.19%. Redprocity: a fondaiond principle for pro-
moting cooperatve bénavior anong self-interested agens.
In: Proc. of ICMAS-96, pp.322329

[19] Sen, S, Haynes T., and Arora N. 1997. Satisfying wser
preferenes while neotiaing meetings Intl. Journal on
Human-Computer Sudies, 47(3):407-427.

[20] sullivan, D., Glass,A., Grosz, B., and Kraus, S. 1999. Inten-
tion reconciliation in the mntext of teamwork: an initial
enpirical investigaton. In Klusch, M., Shelory, O., Weiss,
G., eds, Cooperative Information Agents 111 (LNAI-1652),
pp-149162. Springe Verlag.

[21] Sycaa, J and Zemy, D. 196. Coodinaion of multiple
intelligent software agents. Intl. Journal of Intelligent and
Cooperative Information Systems, 5:181-211.

[22] Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7: 83-124

[23] Xuan, P. and Leser, V. 1999. Incoporating unettainty in
agentcommitments. In: Proc. of ATAL-99, pp.221234



	Intention Reconciliation by Collaborative Agents*
	David G. Sullivan, Barbara J. Grosz Sarit Kraus
	Division of Engineering and Applied Sciences Bar-Ilan University, Israel
	Harvard University, USA and Institute for Advanced Computer Studies,
	University of Maryland, USA
	Abstract
	1 Introduction
	2 Intention reconciliation and collaboration
	3 The SPIRE framework
	4 Decision making in SPIRE
	4.1 Current and future expected income
	4.2 Estimating the loss in next week’s income
	(a) To approximate what will happen if it does not default, it adds itself to the second class.
	(b) To approximate what will happen if it defaults when there is an agent available to replace it...
	(c) To approximate what will happen if it defaults with no replacement, it adds itself to the thi...
	Figure 1. Possible estimates of FEI loss (using a discount factor ��d of 0.8) for an agent that w...


	4.3 Non-monetary factor: brownie points
	4.4 Combining the factors

	5 Experimental results
	Figure 2. SPIRE settings used for most of the experiments in this paper.
	5.1 Heterogeneity in the weight given to FEI
	Figure 3. Outcomes for agent subgroups as the percentage of agents placing a higher value on futu...

	5.2 Heterogeneity in social consciousness
	Figure 4. Task-only income for an entire group of heterogeneous agents as the percentage of agent...
	Figure 5. Outcomes for agent subgroups as the percentage of socially conscious agents (see Sect. ...

	5.3 Effect of the number of outside offers

	6 Related Work
	7 Conclusions
	References



