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Abstract—Evaluation of a person’s posture while exercising is
important in physical therapy. During a therapy session, a physical
therapist or a monitoring system must assure that the person is per-
forming an exercise correctly to achieve the desired therapeutic effect.
In this work, we introduce a system called POSTURECHECK for
exercise assessment in physical therapy. POSTURECHECK assesses
the posture of a person who is exercising in front of the camera of the
Microsoft Kinect. POSTURECHECK extracts unique features from the
person’s upper body during the exercise, and classifies the sequence
of postures as correct or incorrect using Bayesian estimation and
majority voting. If POSTURECHECK recognizes an incorrect posture,
it specifies what the user can do to correct it. The result of our
experiment shows that POSTURECHECK is capable of recognizing
the incorrect postures in real time while the user is performing an
exercise.

Keywords—Bayesian Estimation, Majority Voting, Microsoft
Kinect, PostureCheck, Upper Body Physical Therapy.

I. INTRODUCTION

RECENT advances in technology-assisted physical reha-
bilitation has motivated researchers to design systems

and devices to help the patients through the therapy [1], [2],
[3]. The use of the Kinect interface for physical therapy has
been investigated previously in the literature. An extensive
review [4] summarizes recent studies regarding the use of
Kinect for physical rehabilitation and the validity of these
experiments with regards to the Kinect’s accuracy.

In this work, we designed a system that retrieves specified
anatomical landmarks as input and classifies the user’s pos-
tures as correct or incorrect in real time during an exercise.
For this purpose, we use the Kinect v2.0 for tracking the
user’s skeleton and to record the X, Y and Z coordinates of
the upper body of the user. If a posture is measured to be
incorrect, the method provides information about correcting
it. We implemented and tested this method in a system called
POSTURECHECK that consists of the following steps:

• POSTURECHECK extracts unique features that represent
the posture of the user’s upper body during an exercise.
These features include various angles of the shoulder and
elbow, as well as the orientation of the frontal (coronal)
plane of the upper body.

• POSTURECHECK uses Gaussian priors to model the cor-
rect posture and three incorrect postures that commonly
occur during upper arm exercises. While the user is per-
forming the exercise, POSTURECHECK labels the user’s
postures as “correct” any of three “incorrect” categories
using the posterior probabilities of each model and based
on majority on a sequence of labels to handle correlations

Fig. 1: Arm configuration defined by the three shoulder angles and
the flexion angle at the joint elbow [5]

between time signals of features and eliminate spurious
results.

II. METHOD
A. Feature Extraction:

In order to analyze the user’s posture, the POSTURECHECK
system extracts the positions of six body points using the
Kinect and then computes six features. We here focus on
exercises performed with the right arm, and thus the landmarkd
relate to the four degrees of freedom of the right shoulder and
right elbow [5], as represented in Figure 1. Our method can
be easily generalized to the left arm as well. The six extracted
points are:

• Right hand (xh, yh, zh)
• Right elbow (xe, ye, ze)
• Right shoulder

• Left shoulder
• Neck
• Abdomen

The six features computed from these points are:
1) Elevation angle of the upper arm
2) Azimuth angle of the upper arm
3) Humeral rotation angle of the upper arm
4) Elbow flexion/extension angle
5) Normal vector −→n that is perpendicular to the frontal (=

coronal) body plane
6) Angle α between the vectors connecting the shoulders

and the spine

The last two vectors that respectively connect neck to
abdomen and the two shoulders are used as a representation
spanning the frontal body plane. The normalized cross product
and dot product of these two vectors are the two features that
POSTURECHECK uses to describe the posture of the body.

B. Classification using a Gaussian Model

In order to predict whether the posture is correct or not,
p(y|x) is calculated using Bayes rules and the most probable
label is selected, where x is the vector of the the obtained
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Fig. 2: Four postures considered in our dataset. Figure (a) shows the
correct way of doing the exercise. Figures (b), (c), (d) show the class
upward, downward and leaning forward respectively.

features and y is the label for the given posture. We model
the distribution of each class of postures with a Gaussian prior.
We construct our classifier from these probability models and
apply maximum a posteriori (MAP) as the decision rule.
The probability that a given test posture X belongs to a
specific class i is :

p(X|ci) =
N∏

n=1

p(xn|ci) =
N∏

n=1

N (xn|λi), (1)

where N is the number of features and λ denotes the parame-
ters of the Gaussian model that is learned during the training.
The correct class is the one that maximizes the posterior
probability.

Post-Processing: The decision whether an exercise has been
performed correctly or not does not depend on a single posture,
but it is the result of a sequence of correlated postures that
creates the exercise trajectory. In order to assign final labels
for these correlated sequences, majority voting is applied
to a sequence of labels.The size of the window used for
majority voting is equal to the first minimum of the automutual
information function [6] with in our setup corresponded to
one fourth of the duration of the exercise. The delay between
windows is equal to the half size of the window; thus each
feature contributes equally to two labels in the final decision.

III. EXPERIMENT

In order to prepare our dataset, we asked eight individuals
to perform an exercise in four different ways, in each case
repeating the movement of the arm five to nine times. The
exercise tested is moving the right arm in the transverse
body plane from right to left and back to right again. The
participants performed the exercise with the Proficio robotic
arm while the Kinect camera was placed 1.5 meters in front
of them. The use of robot imitates the scenario where the
user is doing an exercise with an external help which might
create occlusion. The four variations of the exercise include the
correct posture where the back of the user is straight in the
(yz) plane and the participant’s arm moves in the transverse
body plane (Figure 2(a)) and three incorrect postures which
typically make the exercise easier for the user despite the risk
of the injury that they might cause. 2(b) represents the posture
where the user is leaning backward and the arm is pointing
upward. We will refer to this category as ”posture upward”.
Figure 2(c) depicts the user is leaning forward and his arm is
pointing downward. We will refer to this category as ”posture
downward”. In the third posture, instead of using the upper
arm strength to move the arm, users tend to move their whole
upper body, inserting force on the right side of their back, see
Figure 2(d). We will refer to this category as ”posture moving
shoulder”.

TABLE I: The confusion matrix for recognizing four possible pos-
tures during the exercising experiment. Each column corresponds
to one of the prepared labels and each row corresponds to each
hypothesized label for the sequence of postures.

Correct Downward Upward Shoulder moving
Hypothesized Correct 191 5 7 0
Hypothesized Downward 14 158 3 0
Hypothesized Upward 5 0 136 0
Hypothesized
Shoulder Moving

0 0 0 75

We extracted features as explained in Section II-A. The total
number of 21,097 features from our data set, 6,591 belonging
to the correct posture, 5,929 features for the category down-
ward, 6,000 features for category upward and 2,577 features
for the last category, moving shoulder is obtained. We used
the features extracted from four users as the training set, two
users for cross validation and the other two for testing.

Result: A comparison of the class labels that POS-
TURECHECK computed for the exercises in our experiment
and their gold standard labels shows that our system is
capable of successfully distinguishing the four postures. For
example, the correct positive rate (sensitivity) for the first
category, correct posture, is 90.95%, and the true negative
rate (specificity) for this category is 96, 87%, the accuracy of
detecting the correct posture class is 94.87%. Our full results
are summarized in a confusion matrix in Table I. The off-
diagonal numbers in the confusion matrix show that, in a
few cases, false positive and false negative detections occur.
Such occurrence may be due to the continuous nature of the
problem – some exercise postures may not be clearly correct
or incorrect, and so a ground truth boundary between posture
classes is difficult to establish.

IV. CONCLUSIONS
In this paper, we introduced POSTURECHECK, a system

that can distinguish correct and incorrect postures of a user
exercising in front of the Kinect interface. Designing a tele-
rehabilitation system that can engage the users more with their
exercise as well as capable of monitoring their postures is our
future goal to help anyone who needs physical therapy.
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