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Abstract. Outlining live cells and keeping track of their shape
in microscopy videos are urgent tasks for biologists and med-
ical researchers. As manual annotation by experts is time-
consuming, automated solutions for specific types of cells
or imaging modalities have been developed. We here pro-
pose CrowdTrack, a hybrid human-computer tracking method
that can track various types of cells in fluorescence and
phase-contrast microscopy videos by involving crowdsourc-
ing whenever the performance of automated methods is un-
satisfactory. We tested our proposed method on 1,523 frames
from 12 different microscopy videos and obtained 14,351
cell outlines with only 32 5-worker rounds of crowdsourc-
ing. CrowdTrack produced accurate cell outlines and correct
cell lineage trees.

1 Introduction
How to effectively combine human and computer efforts
to analyze image and video data is an interesting, rela-
tively new research question. Prior work showed that crowd-
sourcing can scale up annotation of videos of every-day ob-
jects that are familiar to the crowd workers (Vondrick, Pat-
terson, and Ramanan 2013). It has also been shown that
crowdsourcing can be an effective tool for analyzing im-
age content that is likely not familiar to the typical crowd
worker: microscopy images of cells (Gurari et al. 2014;
2015). In this paper, we present the first tracking system that
leverages the support of crowd workers who annotate videos
of unfamiliar biomedical objects.

High-throughput microscopy technology enables re-
searchers to produce large numbers of images of cells
(Rittscher 2010) that developmental biologists use to ana-
lyze the life cycle and behavior of live cells. Manual an-
notation of these images, however, is costly and time con-
suming for experts, and so automated algorithms have been
developed for cell segmentation (Chittajallu et al. 2015;
Pan, Kanade, and Chen 2010; Song et al. 2013; Yin et al.
2015; Zhang et al. 2015) and tracking (Bise et al. 2009;
Dzyubachyk et al. 2010; House et al. 2009; Meijering,
Dzyubachyk, and Smal 2012; Wu et al. 2012). The algo-
rithms can achieve acceptable performance for certain con-
ditions but then fail to generalize in other conditions. In
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fact, the diverse appearance of different types of cells and
recording difficulties pose a challenge for the development
of a universal best method for cell tracking and segmentation
(Chenouard et al. 2014).

One of the most challenging scenarios for tracking al-
gorithms is cellular reproduction, also called mitosis. Mi-
tosis is the process by which a cell duplicates its contents
and then divides to yield two daughter cells with similar
contents. Research has been conducted to address the task
of tracking cells in this stage of their life cycle and its
new born cells (Harder et al. 2009; Padfield et al. 2009;
Held et al. 2010; Tsalik et al. 2012; Huh and Chen 2011;
Huh et al. 2011). Padfield et al., 2009, for example, used
level set segmentation to analyze cell cycle phases. Harder
et al., 2009, and Huh et al., 2011, built a SVM classifier to
predict cell cycle phases observed in fluorescence and phase-
contrast microscopy sequences.

It would be challenging for a biomedical researcher with-
out computer vision domain expertise to reproduce the auto-
mated cell tracking methods proposed in publications with-
out accompanying code. We here propose a tracking method
called CrowdTrack, accompanied by source code, that in-
telligently involves crowdsourcing support. CrowdTrack au-
tomatically involves crowd workers when mitosis or other
tracking shortcomings are detected in order to ensure both
correct lineage tracking or tracing (following cells and their
descendants over time) and accurate tracking (maintaining
cell outlines). Involving crowd workers enables us to dis-
cover false positive detections of mitosis in particular. We
show that CrowdTrack is generalizable to diverse types of
data by successfully applying it to different types of cells
imaged with phase-contrast and fluorescence microscopy.

Our work makes a contribution to the methodology of
crowdsourcing by showing that video annotation problems
can be solved effectively and inexpensively by assigning
inhomogeneous multi-round tasks to the crowd. In fact,
CrowdTrack was able to extract a huge number of cell out-
lines (14,351) by employing only 32 5-worker rounds of
crowdsourcing.

2 Method
2.1 Automated tracking
In order to segment cells for every frame, we employed
popular level set methods. We chose a Chan-Vese Active
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Figure 1: Interactive Mitosis Detection. Tracking results for cells undergoing mitosis in fluorescence (a) and phase-contrast
(b) microscopy videos. The red boundaries surround the cell that is currently tracked until mitosis is detected in frame 2. The
crowd workers were asked to follow the cell that has an overlaid red boundary and choose the frame where the newborn cells
were visible. A new round of crowdsourcing produced the boundaries of the newborn cells (shown in green). Frame numbers
(blue) were displayed to facilitate the workers’ task. This example illustrates that mitosis detection is a challenging task for
automated methods as mitotic cells display conflicting behavior for different microscopy modalities: in fluorescence images,
the cell shrinks and decreases its luminosity (a), while cells in phase-contrast images (b) drastically reach a peak in pixel
intensity when undergoing mitosis.

Figure 2: Interactive Correction of Cell Boundaries. Frames extracted from a video that was produced by CrowdTrack when it
lost track of a cell. The red boundary surrounds the cell that was currently tracked until the mistake happened and the tracking
was stopped. The crowd workers were asked to follow the cell that has an overlaid red boundary and choose the frame where
the red outline is not accurately enclosing the tracked cell. A new round of crowdsourcing produced a corrected boundary for
that cell, displayed as a green outline on the frame that was selected by workers. This example shows that non-expert crowd
workers can recognize the time step where the automatic tracking fails and fix its shortcoming.

Contours approach (Chan and Vese 2001) to segment cells
in fluorescence images (Fig. 1a) and the Caselles method
(Caselles, Kimmel, and Sapiro 1997) for phase-contrast mi-
croscopy frames (Figs. 1b and 2).

Initial loose boundaries for cells in the first frame of each
image sequence need to be provided to initialize the level set
algorithms. This can be done by experts through the freely
available LabelMe interface (Russell et al. 2008). Then the
level set algorithm outputs a tight boundary for each cell in
the first frame. In subsequent frames, first, dilation is per-
formed on boundaries of cells in the previous frame to ob-
tain initial contours for cells in the current frame, and then
level sets are employed to iteratively tighten these contours
around the cells.

When dealing with challenging datasets with highly vari-
able luminosity and densely populated conditions, these al-
gorithms are affected by mistakes that pose problems to an
accurate tracking. In particular those cells that undergo mi-
tosis need to be tracked carefully as they evolve their shape
and luminosity very quickly and unexpectedly; furthermore
mitotic cells exhibit diverse behavior for different micro-
scope modalities and cell types, as shown in Figure 1. There-
fore algorithms often fail to correctly keep track of the two
newborn cells.

2.2 Classification for mitosis detection
For CrowdTrack to automatically detect when mitosis oc-
curs, we built and trained a k-nearest-neighbor classifier
with a parameter of k = 3 neighbors. CrowdTrack clas-
sifies each cell in each frame of our image sequence as

either undergoing mitosis or not. In order to distinguish
these two classes, CrowdTrack computes several features
for each cell image region: circularity, area, and mean and
standard deviation of pixel intensities (Harder et al. 2009;
Huh and Chen 2011; Huh et al. 2011). It also uses the ratios
of the features computed for the current frame over the mean
value of the features observed during the previous frames.
Ground-truth labels about mitosis occurrence are provided
by an expert.

2.3 Tracking with crowdsourcing support
When automated tracking is started, features for each cell in
each frame are extracted and fed to the classifier.

Crowd Task 1: Mitosis detection. When the classifier de-
tects mitosis for two frames, CrowdTrack stops the tracking
process and produces a video in GIF format showing only
the cell during the mitosis event by cropping the image re-
gion in each frame around the place where the cell is ini-
tially situated (Figure 1). CrowdTrack then starts the first
round of crowdsourcing, showing the video to five workers
and asking them to select the first frame where both newborn
cells are completely visible and remain so for the subsequent
frames. Workers have the option to report that the problem-
atic cell is not undergoing mitosis. If the majority of workers
decides that mitosis is not happening, the classifier predic-
tion is treated as a false positive situation; CrowdTrack then
resumes tracking without any alterations.

Crowd Task 2: Outlining the newborn cells. If the ma-
jority of the crowd workers decides that mitosis is indeed



happening, the frame with the most votes is chosen to repre-
sent the start frame for the newborn cells. CrowdTrack plugs
the selected frame into the LabelMe platform and summons
a second set of five crowd workers to draw loose boundaries
around each cell. The five drawings per cell are combined
by “majority voting” into a single representation of the new
cell as follows: a pixel is deemed to belong to the cell if at
least 3 crowd workers included it in their annotation. The
outlines of each newborn cell, created with this crowd sup-
port, are then used by CrowdTrack to initialize the level set
segmentation algorithm and resume automated tracking.

Crowd Task 3: Detecting tracking mistakes Whenever
CrowdTrack notices that a cell boundary is lost during track-
ing, it asks the crowd to fix the problem as follows. Crowd-
Track creates a GIF video with the tracking output for that
cell shown as a red overlaid boundary on these frames (Fig-
ure 2). Crowd workers are asked to follow the red outline for
the cell and select the first frame where the red outline does
not encircle the tracked cell properly. Majority vote on the
frame number is again employed to increase reliability.

Crowd Task 4: Providing new boundaries The obtained
cropped frame goes through one more round of crowdsourc-
ing where all of the cells in it are annotated through the
LabelMe platform. A new outline for each cell is produced
by applying majority voting to the annotations provided by
the workers as in crowd task 2. Hence, CrowdTrack can
re-initialize the mistaken cell lineage by using the obtained
boundary and rerun the level set methods.

Crowdsourcing design choice. Crowd tasks 1 and 2 could
have been combined into a single crowdsourcing round.
Similarly, crowd tasks 3 and 4 could have been done by the
same workers. However, separating the tasks as proposed is
advantageous for two reasons – efficiency and accuracy. It is
more efficient to first determine a single representative frame
for mitosis or a tracking mistake by majority vote. Other-
wise outlines could be drawn on different frames and could
not easily be combined for restarting tracking accurately.

3 Experiment and Results
3.1 Data Collection
We assembled a library of 20 videos of live cells. We
used both phase-contrast and fluorescence microscopy
image sequences. The phase-contrast images were collected
in-house and show fibroblasts of a mouse strain recorded
with a Zeiss Axiovert S100 microscope every 30 seconds,
resulting in 3,897 frames. The fluorescence microscopy
data were obtained from the 2013 Cell Tracking Challenge
(http://www.codesolorzano.com/celltrackingchallenge),
(Maška et al. 2014). Image sequences of four different kinds
of cells include Chinese hamster ovary cells, mouse stem
cells, rat mesenchymal stem cells, and simulated nuclei
moving on a flat surface.

3.2 Experimental Methodology
We used the Amazon Mechanical Turk internet marketplace
to perform our crowdsourcing experiment, hiring 5 workers

for each task. Out of 20 videos available, we selected the
12 we deemed most appropriate for automated tracking and
manual annotation. The remaining 8 videos (which included
the simulated nuclei) were only used for training purposes.
We tested CrowdTrack in a leave-one-out round-robin fash-
ion, where each of the 12 videos was tested on a system
that was trained on 11 plus 8 videos. An expert provided
ground truth labels about mitosis occurrence for 25,040 cell
regions obtained from automatic tracking. The videos that
CrowdTrack automatically created for crowd task 1 con-
tained 17 to 27 frames, depending on the type of data set.
For crowd task 2, 11 frames preceding the tracking problem
were used. In our experiments, CrowdTrack processed 1,523
frames that each included 9.42 cells on average.

To evaluate our results for cell segmentation, we sum-
moned an expert to provide ground-truth lineages for all
the cells in 38 randomly selected frames of our dataset. We
then computed the Jaccard index to measure the overlap ra-
tio A∩B

A∪B between the expert-drawn cell region A and the re-
gion B produced by the tracking algorithm.

To evaluate the ability of the tracking algorithm to de-
tect the cells and follow them in time, that is, lineage trac-
ing, we employed the metric “TRA” proposed by Maška et
al., 2014. This metric measures the difficulty of changing
the acyclic lineage graph generated by CrowdTrack and the
ground truth graph by computing the number of basic oper-
ations that are needed to make these graphs identical.

3.3 Results
CrowdTrack produced 14,351 cell boundaries with the sup-
port of 51 unique workers and with Jaccard scores of 0.662
for phase-contrast images and 0.769 for fluorescence videos.
These accuracy scores are high, considering that prior work
reports 0.85 for expert agreement, e.g., Gurari et al., 2015.

CrowdTrack also produced correct lineage graphs, which
we were able to verify for fluorescence image sequences, for
which we had ground-truth lineage graphs: CrowdTrack pro-
duced an average TRA score of 0.8485 (where 1 is a perfect
tracking result and 0 is completely incorrect).

The automated tracking process was improved by 32
rounds of crowdsourcing that were required by CrowdTrack
whenever the automated tracking was unsatisfactory. In par-
ticular, 10 rounds were performed to pin down a mitotic
event. Two of these situations were actually misclassified
by our model as a result of sudden changes of the shape
of a cell; however, crowd workers were able to recognize
them as false positives and reported accordingly. Six cycles
of crowdsourcing were requested as a result of a cell bound-
ary being lost. Six rounds were necessary in order to provide
new boundaries for newborn or mistracked cells as explained
in Section 2.3.

4 Discussion and Conclusions
Our study shows that imperfect tracking methods can be im-
proved with the help of crowd workers. It is particularly in-
teresting that the crowd work was highly accurate although
the workers were probably not familiar with the video con-
tent of moving cells. A similar observation was made by



Gurari et al., 2014; 2015 who found that crowd workers
can segment cells accurately. Our study provides further ev-
idence that crowdsourcing has the potential to help scale up
the annotation process of scientific video data, as needed for
research in developmental biology. We showed that crowd
workers can reliably support the tasks of identifying true and
false positive detections of mitosis, and fixing the tracking
mistakes of automated algorithms.

Even though the task of automatic cell tracking has
been explored by the research community for several years,
state-of-the-art methods are still not sufficiently robust, i.e.,
their performance highly depends on the data employed
(Chenouard et al. 2014). CrowdTrack is generic in the sense
that its performance does not intrinsically depend on the em-
ployed data. We have shown this by applying it successfully
to both fluorescence and phase-contrast microscopy image
sequences and different types of cells.

By making our full source code and data freely available,
we aim to stimulate open collaboration among researchers
and inspire efforts towards this fascinating and challenging
field of study. Our code is modular, so it is straightforward
to plug in, for example, other tracking methods. In the fu-
ture, we plan to collect additional datasets to train and test
our model. We will incorporate additional automated meth-
ods to improve the segmentation of clusters of cells and mi-
tosis detection. Finally, we will develop and test additional
crowdsourcing methodologies to produce an accurate, effi-
cient, and robust hybrid system.
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