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ABSTRACT
Physical therapy is an essential element in a comprehensive
rehabilitation plan. Robot-assisted solutions have recently
become more common to support the patient throughout
the healing process. In this paper, we examine two tech-
niques for assessing the movements a person performs when
supported by a robotic arm. We propose DyAd, a Dynamic
Adjustment system that recommends adjusted exercise con-
figurations based on a person’s performance. DyAd works
with the Proficio arm, a commercial robotic arm designed
for rehabilitation. The arm provides DyAd with kinematic
data about the person’s movement. DyAd has a graphical
interface to support the user with a 3D visualization of the
exercise trajectory to be followed. When a person tries to
make a movement following the designed trajectory, DyAd
compares this movement, the measured trajectory, to the
designed trajectory. It evaluates their similarity using Dy-
namic Time Warping. DyAd also measures the smoothness
of the movement using a modified version of the spectral arc
length method. We designed DyAd to propose adjustments
to the configuration of the exercise for specific users after
each exercise trial. Finally, we validate the functionality of
DyAd by presenting the changes in the difficulty level for
users based on their performance.
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Figure 1. Exercise setup: The user’s arm is strapped to
the Proficio robot arm. In the back-drivable case, she con-
trols the movement of the robot arm while grasping its end
effector. In the other case, the robot guides her movement.

1. INTRODUCTION
Surgery, injury or increasing frailty due to aging are rea-

sons one might need physical therapy. Robotic therapy is a
beneficial treatment for individuals with chronic motor im-
pairment [6]. Sport injuries also require planned programs
improve the flexibility of the athlete and accelerate recovery.
It has been shown that patients who have been provided with
robot-aided rehabilitation have gained more from their ther-
apy than those who were using only standard plans. Equip-
ping therapist with robotic devices can increase productivity
and quality of care as they provide quantifiable, safe and re-
productive physical activity [23].

One of the crucial aspects of a rehabilitation program is
to design a proper exercise for the patient to promote health
while preventing any damage. The exercise should be safe
while sufficiently challenging to maximize the patient’s ben-
efit and compliance [10,13]. Therapists require prior knowl-
edge about the patient such as the level of impairment in
order to design the proper exercise. Having quantitative
measures of performance, provided by a robotic system, can
help the therapist to track the level of recovery and changes
in a patient’s strength. A personalized plan capable of dy-
namically adjusting the level of difficulty of the exercises,
based on quantitative measures, can significantly facilitate
the rehabilitation process.

The Proficio, shown in Figure 1, is a commercially-avail-



able 3-degrees-of-freedom robotic arm. It is designed as
a research instrument that facilitates the development of
tools and methods for physical therapy. Intended users are
patients recovering from accidents, stroke, and spinal-cord
injury. The Proficio allows researchers to design exercises
that involve reaching tasks and provide feedback using a
3D haptics force field. The Proficio robotic arm is a back-
drivable manipulator, which means a user’s arm strapped on
the robotic arm can move the robotic arm (rather than the
robotic arm moving the user’s arm). The Proficio robotic
arm is also capable of capturing data from the exercise to
provide the therapist with valuable data about the perfor-
mance of the patient.

In this work, we propose DyAd, a system that is moti-
vated by two needs, (1) to evaluate the performance of in-
dividuals with impairments during physical therapy and (2)
to provide recommendations for the therapist to reconfigure
the settings to a level of difficulty appropriate for the indi-
vidual. The components of our system can be summarized
as follows:

• Similarity of trajectories: Dynamic Time Warp-
ing (DTW)[3] is a common method for aligning two
trajectories and returning the error as a measure of
dissimilarity between them [13]. DyAd uses DTW to
compare the trajectories of the user’s movement mea-
sured by the robotic arm with the trajectory the user
was supposed to follow.

• Smoothness: DyAd uses a measure of smoothness
to capture the concepts of continuity and noninter-
mittency of a movement. A recent study showed the
importance of smoothness in the assessment of senso-
rimotor impairment and motor learning [2]. While a
smooth motion is expected from someone without dis-
ability, individuals with poor motor control find mov-
ing smoothly quite challenging. A modified version of
the spectral arc length measurement (ASL) [2] is used
to evaluate this important parameter.

• Dynamic Difficulty Adjustment: After the assess-
ment of an exercise trajectory using the aforemen-
tioned methods, DyAd recommends a new configura-
tion for the difficulty level of the next exercise session.

The novel contribution of our work is the design and eval-
uation of a system that uses, in combination, a DTW score
and a smoothness measure to analyze gesture trajectories,
and then, based on this analysis, dynamically adjusts the
difficulty of exercises.

The rest of the paper is organized as follows: In the next
section, a brief review of related works regarding the robotic
arm for rehabilitation is presented. It is then followed by a
description of the performance measurement techniques that
DyAd applies. In section 3, we also explain our dynamic
difficulty adjustment method. The experiments are shown
in section 4, and the paper ends with our conclusion and
ideas for future work.

2. RELATED WORK
The goal of rehabilitation robotics is to provide effective

approaches for enhancement of motor learning. A compar-
ison of results between the use of robotics in rehabilitation
and conventional techniques shows a significant difference

in the recovery progress of people with motor disabilities.
Volpe et al. [23] presented three studies that demonstrated
the improved motor function of the paralyzed upper limb
measured by clinical scales when robotic devices were uti-
lized as part of a patients’ rehabilitation plan. A systematic
review of studies regarding the effect of robots in rehabilita-
tion was given by Kwakkel et al. [12]. They have investigated
various cases and suggested that there exits a positive trend
toward robot-assisted therapy with regard to motor recov-
ery when measured with common assessment scales. An-
other comparison was made for motor rehabilitation of the
upper limb after stroke that provides encouraging evidence
supporting the potentials in presence of robots to increase
public healthcare burden and reduce in the expenses regard-
ing post-stroke physical therapy [14].

Tele-rehabilitation is beneficial when the therapist cannot
be present. Tele-rehabilitation can be helpful for patients
in rural areas, for patients with limited mobility, or in set-
tings where therapist involvement is considered to costly.
Reinkensmeyer et al. [16], for example, introduced a web-
based tele-rehabilitation system that consists of variety of
games, tests and progress charts. To improve telerehabilita-
tion, robotic devices have been proposed to be included in
the therapy [8,9].

A brain-robot interface is another approach to leverage
robot-assisted technology [7]. As an integrative rehabilita-
tion strategy, it decodes the subject’s motor imaginary or
movement attempt using EEG- or ECoG- based BCI shared-
control strategy and enables artificial support of the senso-
rimotor feedback loop.

Dynamic difficulty-adjustment techniques have been ex-
tensively studied for commercial computer games to address
problems such as difficulty gaps between levels or unrespon-
siveness of the system to player learning [19, 21]. However,
these adaptive systems are not limited to computer games
and have been recently the focus of research in rehabilitation
as well.

An adaptive automated task-practice system was intro-
duced by Choi et al. [5] that engages a user in realistic func-
tional tasks based on a the user’s performance. Another
performance-based system [11] has been proposed that uses
time, speed and EMG thresholds to trigger robot assistance
in therapy. In that work, performance measures grade the
patients’ abilities to initiate movement, to move from start-
ing point to the target, to aim their movement along the
target axis and to reach the target position. An online com-
ponent of the work tries to keep patients motivated during
therapy session. Note that the approaches in measuring user
performance in these two works significantly differ from ours.

A more recent work has focused on multimodal data such
as speech, facial expressions, and body motion to take ther-
apy progress into consideration and adjust subsequent ex-
ercises by formulating the problem as a Markov Decision
Process [22].

Robotic arms can offer exercise support actively or pas-
sively. In the passive case, a patient does not need to exert
any force, and the robot arm will move his or her arm based
on the path prescribed by the therapist. In the active case,
the patient moves the robotic arm himself or herself, and
the robotic arm measures the kinematic and kinetics of the
movement. A combined active-passive training system was
proposed recently to lead a person through an exercise; a
correctional force is applied when he or she deviates from



the predefined trajectory [15]. In our work, we use the ac-
tive approach, i.e., the user is actively moving the robotic
arm. If the user deviates from the predefined trajectory be-
cause the exercise is too difficult for him or her, our system
lowers the difficulty level of the subsequent exercise. In ad-
dition, our system uses haptic forces adaptively to provide
the user with feedback.

3. APPROACH
In this section, we describe how DyAd combines two meth-

ods of analyzing movement trajectories. We use dynamic
time warping [3] as a mean to compare the similarity of two
trajectories, and the spectral arc length method to quantify
the smoothness of a trajectory. We explain how we adapt
Dynamic Scripting [20, 21], in particular, how we leverage
the stochastic optimization idea behind Dynamic Scripting
for DyAd, so that it can adjust the difficulty level of the
prescribed exercise.

3.1 Dynamic Time Warping (DTW)
Dynamic Time Warping is a dynamic programming tech-

nique to measure the similarity between two temporal se-
quences. It aligns the signals by warping stretched or com-
pressed signals in a non-linear fashion to find the optimal
match between them. Although being originally used for
speech recognition [17], DTW has been applied widely to
other time-series analysis tasks, in particular, gesture recog-
nition to compare and match temporal gesture sequences.
We briefly illustrate DTW here. Assume two time series S
and T represent two gesture trajectories:

S = s1, s2, ..., si, ..., sn (1)

T = t1, t2, ..., tj , ..., tm (2)

The goal of DTW is to compute a warping path

W = w1, w2, ..., wk, ..., wp (3)

that maps the elements of S and T such that the distance
between them is minimized. W is a sequence of grid points
where each point corresponds to an alignment between a
point in S and another in T . The Manhattan or Euclidean
distance functions are common for measuring the distance
between two corresponding points:

δ(wk) = dist(si, tj). (4)

With this definition of the local distance between points,
dynamic time warping can be formulated as a dynamic pro-
gramming problem to minimize the following equation:

Error(S, T ) = min
w

[Σpk=1δ(wk)]. (5)

The Error is then normalized by the length p of W .
An example of two joint position trajectories, measured

by the robotic arm, is shown in Figure 2. DyAd matches
corresponding points on the trajectories using DTW. The
normalized Error was 0.126, small enough so that DyAd
concludes that the current performance is sufficient. DyAd
then adjusts the difficulty level of the exercise depending on
the result of the smoothness evaluation and exercise timing,
as described below. We have used the original Dynamic
Time Warping code released by Salvador and Chan [18] to
compare our gesture time series.
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Figure 2. Matching two gesture signals using DTW. The
movement trajectories that two users, a teacher and a stu-
dent, created during an exercise. Three components of the
two trajectories are shown as functions of time. They cor-
respond to the angles that the three joints of the robot
arm make with respect to each other, using the Denavit-
Hartenberg convention. The teacher designed a desired tra-
jectory (solid blue), the student tried to follow the same
trajectory (dashed blue). DTW is used to find correspond-
ing joint positions (red). The similarity of the trajectories is
then measured by the Euclidean distance between matching
positions.

3.2 Smoothness
Smoothness has been identified as a fundamental parame-

ter to assess the scale of a motor impairment, as it has been
shown to correlate significantly with a patient’s ability to
control the movement [4]. A smooth motion is considered
to be a continual movement without any interruption. Mea-
suring smoothness quantitatively, with the help of a robotic
arm, instead of simply relying on qualitative visual obser-
vations by the therapist or comments by the patient, may
yield a better understanding of the level of movement con-
trol that a patient has. It should be noted though that
intermittency might be caused by poor task familiarity, and



a therapist must validate the results based on experiments
that eliminate this factor.

The assessment of motor control in terms of smoothness
requires a range of scores to reflect the motor ability of indi-
viduals. However, it is not possible to define a specific range,
because depending on the kind of task, this range will vary.

The literature discusses various methods about how to
measure smoothness. The harmonic ratio, jerk-based meth-
ods, or the spectral arc length method [2] are common meth-
ods. The spectral arc length method [1] measures the arc
length in the Fourier magnitude spectrum within a fixed
range of a speed profile indicated as ωc in the following equa-
tion:

SAL ,
∫ ωc

0

[
(

1

ωc
)2 + (

dV̂ (ω)

dω
)2
]1/2

dω, (6)

where V̂ (ω) = V (ω)
V (0)

, V (ω) is the Fourier magnitude spec-

trum of the speed profile, V (0) is the value of this spec-
trum at frequency 0 (also called DC magnitude), and the arc
length is estimated within frequency 0 and a fixed ωc equal
to 20 Hz. A slightly modified version of this method was
proposed [2] that adaptively selects the range of frequencies
based on specific constraints in the movement:

wc , min{wmax
c ,min{w, V̂ (r) < V̄ , ∀r > w}}, (7)

where V̄ is threshold on the Fourier magnitude. The use of
an adaptive method is helpful as it makes it possible to set
these parameters based on the nature of the movement.

3.3 Dynamic Difficulty Adjustment (DDA)
The exercises prescribed by the therapist must not only

be safe and achievable, but they should be sufficiently chal-
lenging to motivate the patient to work harder and make
progress. In this part, we first explain dynamic scripting, the
algorithm we are inspired by, and then propose a method for
dynamic difficulty adjustment that DyAd uses to adjust an
exercise according to the movement ability of an individual.

3.3.1 Dynamic Scripting
Dynamic scripting, proposed by Spronck et al. [19], is

an unsupervised online learning algorithm inspired by rein-
forcement learning that uses stochastic optimization. Online
learning must be fast, effective, robust ; these conditions ex-
clude many regular learning algorithms because they would
be too slow.

Dynamic scripting was originally introduced for compli-
cated computer games, since scripts can be executed sequen-
tially to overcome the complexity issue. Dynamic scripting
maintains several rule bases, corresponding to separate op-
ponents in a game. Rules are extracted from the rule base to
form a script that describes the behavior of the opponent as
it is generated. The probability that a rule is selected from
the rule base depends on the weight assigned to it. These
weights are updated based on previous performance of the
rule in the script. It will be rewarded with increase in weight
in case of success or punished by decrease in the weight if
it has caused failure. The reward or punishment values are
calculated using a fitness function that relates the success
and failure of the rule to the change in the weights.

We take advantage of the stochastic optimization idea be-
hind dynamic scripting. For DyAd, we employ a determin-
istic fitness function to map the performance measures to
rules. We propose to obtain the parameters required for re-

configuration of the difficulty level in a stochastic manner
using a random distribution function biased by the values
suggested by the fitness function. A more detailed explana-
tion of this method is discussed in the next section.

3.3.2 DyAd: Dynamic Adjustment of Difficulty
Three parameters, denoted by vector ~x, capture the quan-

titative performance measures that DyAd uses to decide on
recommendations for exercise adjustment. (1) DyAd com-
pares the the measured trajectory with the designed trajec-
tory and reports the DTW error as a measure of dissimilar-
ity. (2) DyAd uses the measured velocity values along the
trajectory of the motion to evaluate the smoothness of the
motion using Equation 6. (3) DyAd uses the total recorded
time to monitor the performance of a user.

The domain knowledge is now required to map the dif-
ferent range of ~x to a score between zero and one. DyAd
employs two nonlinear functions, the sigmoid for parame-
ter (1) and the logarithm for parameter (2) and (3), to serve
this purpose. To illustrate more, in case of sigmoid function,
DyAd first uses

scorexi =
1

1 + exp−(αxi+β)
, (8)

where constants α and β control the application of domain
knowledge. Different values for α and β can lead to com-
pletely different scenarios. They can bias the score function
such that it becomes easy for a user to receive a high perfor-
mance score. The system would then label the user’s current
performance acceptable and would make the exercise more
challenging in the next trial. With another set of values for
α and β, a motion trajectory may be given a low score and
then DyAd would recommend an easier exercise until the
user’s performance is acceptable.

The therapist can change the values for α and β depending
on the condition of patients and what is expected from them
in that session of therapy.

In order to relate the quantified performance results to
the level of difficulty for the next exercise, DyAd uses three
variables, denoted by ~y: (1) the path index, (2) the size of
the ball, and (3) the resistance level of the haptic-feedback
walls along the path. The parameters will be explained in
more details in the next section. Similar to the dynamic
scripting algorithm, DyAd defines a fitness function

scorey = A× scorex, (9)

where A is a 3 by 3 matrix corresponding to the contribution
of each element of ~x to ~y.

We here propose a method that uses the normal distribu-
tionN to combine domain knowledge, i.e., an understanding
of the current performance of the motion of the user, with a
need to have a random component for the exercise. DyAd
randomly selects the value

result = N
(
µ, σ

)
(10)

for the difficulty level in the next trial, where the inputs and
output are defined as follows:

• The mean µ is obtained from scorey by a linear func-
tion f(scorey) = (1 − scorey) + 0.5 that maps scores
between 0 and 1 to the desired maximum and min-
imum of the changes in the difficulty parameters for
the next trial. For example, when the score is 0.3 for
the size of the ball (less than 0.5), it reflects the need
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Figure 3. Two examples of normal distribution N applied
to suggest a new size of the ball (Eq. 10). The blue curve
represents the distribution for the second trial; a score of
0.65 was obtained for the radius of the ball; since the score
is acceptable (above 0.5), the distribution is biased towards
smaller balls on average. Similarly, the red curve is the
distribution for suggested balls in the fifth trial; a score of
0.3 was obtained for the radius of the ball; larger balls are
the result of lower scores (less than 0.5). The examples show
how the shape of the distributions is affected by the number
of previous trials: the variance becomes smaller as the users
go through more trials.

for a larger ball in the next trail, and thus, the mean
is mapped to µ = 1.2.

• The variance σ of the normal distribution corresponds
to how much DyAd wants to explore various cases. In
our design, a wider distribution (larger σ) corresponds
to lots of exploration; a narrower distribution (smaller
σ) corresponds to exploitation of the current knowl-
edge about the performance of the user. Thus, the
variance is a decreasing function of number of trials:
σ = σ0 × (1 − log(trialnumber)) for a trial number
between 1 and 9, and a fixed value after that.

• The output result of the random function N deter-
mines the changes in the ~y parameters. For instance,
in Figure 3, the red curve recommends a value between
1 and 1.4 which is the ratio in the increase of the size
of the ball.

4. EXPERIMENT

4.1 Methodology
In order to facilitate the visualization of the exercise, we

have implemented a 3D virtual exercise interface (Figure 4).
Users are asked to move their right arm in a semi-circular
shape, moving through the virtual balls shown in the inter-
face, while strapped to the Proficio robotic arm.

As described above, the size of the ball is one of the pa-
rameters that DyAd adjusts. Larger balls are preferred in
the first trial, in order to direct the participants to the cor-
rect path. Smaller balls are suggested when participants can
make smooth and accurate motions. Two examples of ball
configurations, one with large and the other with small balls,
are shown in Figure 4.

Depending on a user’s previous performance, DyAd rec-
ommends new positions for the balls, which also yield dif-
ferent levels of difficulty. New ball positions require the

Figure 4. Two different configurations of the balls. The
small yellow ball indicates the position of the handle of the
arm. Users begin from the red ball on the right. They are
asked to move their arm to the left to pass all five balls
and move their arm back to right, repeating this motion
three times. They experience the haptic force as resistant
walls placed around the blue balls only. In order to help
visualize the 3D space, we designed our display to show the
projections of all the balls on the z-plane. When the balls
are larger and closer to the users, it will be easier to move
through them; as users manage to reach the required perfor-
mance, the balls get smaller and farther to make the exercise
more challenging for them.

user’s arm to be held in a new plane during its semi-circular
movement. Horizontal movements are considered to have a
medium difficulty level. Easier configurations consist of balls
placed so that the user’s arm is directed upward during the
motion. The easiest level corresponds to an arm inclination
of 45 degrees and is referred to as level 1 later in the paper.
A downward direction of the arm is considered difficult, since
the users have to stretch more to reach the virtual balls. In
the most difficult configuration, the balls are placed around
45 degrees downward (referred to as level 8).

Starting arm positions are exemplified for three different
difficulty levels in Figure 5. The user begins the exercise by
following the easiest path shown in Figure 5(a). The user
then is asked to exert more control and follow the designed
paths in Figure 5(b) and (c).

We designed two force-feedback walls along a movement
path. They are the surfaces of the blue balls in the virtual
world shown Figure 4. They require the user to exert a
certain force in order to pass through. The strength of these
walls, the haptic force, is a parameter that DyAd changes
depending on the user’s performance.

As stated earlier, the score function is determined based



(a) (b)

(c)

Figure 5. Three exercise variations. The shown arm direc-
tions correspond to three difficulty levels. The user experi-
ences the easiest in (a). As the arm points downward (b),
the movement becomes harder, since the user has to stretch
the arm more and keep balance. The configuration shown is
(c) is the most difficult of the three shown configurations.

on domain knowledge. In our experiment, the parameters
α and β in Equation (8) were set in such a way that on
average users without movement impairments should be able
to explore all levels of difficulty.

It is also worth noting that we did not apply any con-
straints on the width of the temporal signal in the DTW
algorithm, since it is probable that an individual decides
to rest and stops moving the arm, which would result in
a stretched temporal signal. This signal is supposed to be
matched to another relatively compressed temporal signal.
Consequently, a constrained algorithm might not be able to
detect the similarity of these two gesture signals.

We asked ten individuals with no physical disabilities, five
males and five females in their mid and late twenties, to
test DyAd. The volunteers stood besides the robotic arm
and looked at the monitor with the virtual interface, which
was placed in front of them. We asked them to move their
arms so that they would move the yellow ball through the
five red and blue balls, back and forth, three times in each
trial. The experiment consisted of ten trials, each with a
new parameter updated by DyAd.

4.2 Results
Our results suggest that DyAd performed as we planned

with regards to adapting to the ability of users to move
through the virtual space. Our idea to display virtual balls
along the desired trajectory seemed to have helped the users
to more clearly visualize the path they were asked to take.
As the users became familiar with the movement of the yel-

Figure 6. Adjustment of ball size during ten trials (here for
visualization clarity, only shown for five participants). In the
first trial, the experimental configuration is initialized with
a large ball size (radius = 0.08). If a user’s performance
is acceptable, then the system reduces the ball size. All
ten participants reached the game level with the smallest
possible size of the balls in less than ten trials.

low ball that corresponded to their arm movement and ob-
tained a better scores, DyAd appropriately reduced the size
of the red and blue balls.

We show the results of the experiment in Figures 6–8 for
only five out of ten participants for visualization clarity. We
chose the displayed subset of results in such a way that they
can fully explain the measured patterns.

All users reached the smallest expected size of balls as
shown in Figure 6. For some of them, DyAd measured a bet-
ter performance in the first trials which led to smaller balls
in the earlier trials. Others had difficulty finding the path
and could not get higher scores for the size of the ball; thus
DyAd recommended larger balls in the beginning and then
moved towards the smaller balls as the users made progress
in the next trial.

DyAd recommendations for ball positions has a similar
pattern as its recommendations with regards to ball size.
Users were able to reach the hardest level of difficulty in
the position of the balls as shown in Figure 7. One of the
participants reached the hardest level in three trials as he
finished the exercise fast, accurate and smooth. On average,
it took five trials for users to reach the farthest possible
configuration of the balls.

DyAd recommendations for changing the strength of the
haptic force did not have the same pattern as its recommen-
dations for ball size or position. Here, smoothness turned
out to be the most effective parameter that directly affects
the strength of the walls. Some users reached the highest
possible value. Others found it difficult to be smooth, as
shown in Figure 8.

4.3 Discussion
Our experiment showed that DyAd is able to make ad-

justments dynamically. If the users were confused or found
an exercise difficult, DyAd recommended a decrease in the
level of difficulty to help the users find the required path.
Then, as their performance improved, DyAd asked the users
to try more difficult movements.

The volunteers who tested DyAd had no motor disabil-
ities. We accounted for that when we designed the virtual
world and the range of exercise difficulties. Accordingly, all



Figure 7. DyAd recommendations for changes in the diffi-
culty level of positioning of the balls (for visualization clarity
only shown for five out of ten participants). The vertical axis
represents the level of difficulty from easiest (level 1) to most
difficult (level 8). Every user began with the horizontal di-
rection of the arm (level 4). For those users who could follow
the designed trajectory closely and with sufficiently smooth
motion, DyAd suggested a more challenging setup, where
the user’s arm points downward (level 5 or higher). One
participant (red results) could not follow the correct path in
the first two trials, and DyAd recommended the easiest path
with the user’s arm pointing upward (level 1) in subsequent
trials.

testers were able to reach the highest level of difficulty, even
if it took them a number of trials. It is worth noting that
our results depended on how the score functions were ini-
tially defined for each performance measure and how they
were mapped to difficulty levels.

DyAd is designed to give therapists flexibility. The score
and fitness functions can be modified based on what out-
comes are expected from a specific user and a specific ex-
ercise. DyAd supports different approaches: one can use a
strict score function that accepts a result only if the user per-
forms an exercise highly accurately, fast, or smoothly. Or,
one can allow minimal performance and then challenge users
with additional exercises. The sensitivity of DyAd to its in-
put parameters, however, can also be considered a drawback.
Prior knowledge about the possible values of smoothness or
similarity of trajectories is required to label the measured
values as progress or failure. In the future, we will explore
ideas about how to automatically define and tune the score
and fitness functions so that a therapist could take advan-
tage of the flexibility that DyAd provides but would not
need an in-depth understanding of its technical issues.

Finally, we should discuss that when using DTW and
matching a stretched measured trajectory to a designed tra-
jectory, DyAd can determine if a user is taking a rest. This
analysis was not performed in our experiment. It may be
beneficial to evaluate the movement of users with disabili-
ties, since it reveals if a part of the exercise is so difficult
that has made the user to stop moving the arm.

5. CONCLUSIONS
We have designed DyAd, a system that dynamically ad-

justs the difficulty level of physical exercises performed with
the Proficio robotic system and based on quantitative per-
formance measurements. We have shown that DyAd recom-
mends a more difficult arm exercise if the current exercise is

Figure 8. Change of the strength of the haptic force (walls)
at each trial, as proposed by DyAd in response to users’
progress (shown for five out of ten users). The strength
of the walls was small in the beginning of the experiment,
and it increased as users made progress. When a user’s
performance was not acceptable (orange), the strength of
the walls did not increase.

not challenging enough; it recommends an easier exercise if
it discovers that the user has trouble following the current
exercise.

The approach to use DTW to align time series of gestures
has been stated before in the literature. Novel contributions
of our work are (1) applying DTW in conjunction with the
spectral arc length method to analyze trajectories and (2)
designing a system that dynamically adjusts the difficulty of
exercise based on this analysis.

In the experiment reported in this paper, users without
disabilities tested the efficacy of our proposed system DyAd.
The experimental outcome encourages us to prepare for and
conduct a study that includes therapists and their patients.
Our future work will also include the design of appropriate
exercises for DyAd, as well as virtual interfaces that enable
tele-rehabilitation.
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