Dimensionality reduction

Outline

- Dimensionality Reductions or data projections
- Random projections
- Singular Value Decomposition and Principal Component Analysis (PCA)

The curse of dimensionality

 The efficiency of many algorithms depends on the number of dimensions d

 Distance/similarity computations are at least linear to the number of dimensions

Index structures fail as the dimensionality of the data increases

Goals

- Reduce dimensionality of the data
- Maintain the meaningfulness of the data

Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point x_i ∈ R^d (d-dimensional real vector):
 - $x_i = [x_{i1}, x_{i2}, ..., x_{id}]$
- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones

Dimensionality reduction

- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones
- Both methods map vector x_i ∈ R^d, to vector y_i ∈ R^k, (k < <d)

• $F: R^d \rightarrow R^k$

Linear dimensionality reduction

- Function F is a linear projection
- $\mathbf{y}_i = \mathbf{x}_i \mathbf{A}$

• $\mathbf{Y} = \mathbf{X} \mathbf{A}$

• Goal: Y is as close to X as possible

Closeness: Pairwise distances

Johnson-Lindenstrauss lemma: Given
 ε>0, and an integer n, let k be a positive
 integer such that k≥k₀=O(ε⁻² logn). For
 every set X of n points in R^d there exists
 F: R^d→R^k such that for all x_i, x_i ∈X

 $(1-\epsilon)||x_i - x_j||^2 \le ||F(x_i) - F(x_j)||^2 \le (1+\epsilon)||x_i - x_j||^2$

What is the intuitive interpretation of this statement?

JL Lemma: Intuition

- Vectors x_i ∈ R^d, are projected onto a kdimensional space (k < <d): y_i = x_i A
- If ||x_i||=1 for all i, then,

 $||\mathbf{x}_i - \mathbf{x}_j||^2$ is approximated by $(\mathbf{d}/\mathbf{k})||\mathbf{y}_i - \mathbf{y}_j||^2$

• Intuition:

- The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k/d
- The probability that it deviates from expectation is very small

Finding random projections

- Vectors x_i ∈ R^d, are projected onto a kdimensional space (k < < d)
- Random projections can be represented by linear transformation matrix A
- $\mathbf{y}_i = \mathbf{x}_i \mathbf{A}$

• What is the matrix A?

Finding random projections

- Vectors x_i ∈ R^d, are projected onto a kdimensional space (k < < d)
- Random projections can be represented by linear transformation matrix A
- $\mathbf{y}_i = \mathbf{x}_i \mathbf{A}$

• What is the matrix A?

Finding matrix A

- Elements A(i,j) can be Gaussian distributed
- Achlioptas* has shown that the Gaussian distribution can be replaced by

$$A(i, j) = \begin{cases} +1 \text{ with prob } \frac{1}{6} \\ 0 \text{ with prob } \frac{2}{3} \\ -1 \text{ with prob } \frac{1}{6} \end{cases}$$

- All zero mean, unit variance distributions for A(i,j) would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?

Datasets in the form of matrices

Given **n** objects and **d** features describing the objects. (Each object has **d** numeric values describing it.)

<u>Dataset</u>

An **n-by-d** matrix **A**, **A**_{ij} shows the "**importance**" of feature **j** for object **i**. Every row of **A** represents an object.

<u>Goal</u>

- 1. Understand the structure of the data, e.g., the underlying process generating the data.
- 2. Reduce the number of features representing the data

Market basket matrices

Find a subset of the products that characterize customer behavior

Find a subset of the groups that accurately clusters social-network users

Find a subset of the terms that accurately clusters the documents

Recommendation systems

Find a subset of the products that accurately describe the behavior or the customers

The Singular Value Decomposition (SVD)

Data matrices have **n** rows (one for each object) and **d** columns (one for each feature).

Rows: vectors in a Euclidean space,

Two objects are "**close**" if the angle between their corresponding vectors is small.

SVD: Example

Input: 2-d dimensional points

Output:

<u>1st (right) singular vector:</u> direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

 σ_1 : measures how much of the data variance is explained by the first singular vector.

 σ_2 : measures how much of the data variance is explained by the second singular vector.

U(**V**): orthogonal matrix containing the left (right) singular vectors of **A**.

 Σ : diagonal matrix containing the singular values of A: ($\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_\ell$)

Exact computation of the SVD takes O(min{mn², m²n}) time.

The top k left/right singular vectors/values can be **computed faster** using Lanczos/Arnoldi methods.

 A_k is an approximation of A

SVD as an optimization problem Find C to minimize:

$$\min_{C} \left\| A - C X_{n \times k} \right\|_{F}^{2}$$
 Frobenius norm:

$$\left\|A\right\|_{F}^{2} = \sum_{i,j} A_{ij}^{2}$$

Given **C** it is easy to find **X** from standard least squares. However, the fact that we can find the optimal **C** is fascinating!

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."* *Dianne O'Leary, MMDS '06

Reference

Simple and Deterministic Matrix Sketching Author: Edo Liberty, Yahoo! Labs KDD 2013, Best paper award

Thanks Edo Liberty for the slides

Sketches of streaming matrices

- A nxd matrix
- Rows of A arrive in a stream
- Task: compute

$$AA^T = \sum_{i=1}^n A_i A_i^t$$

Sketches of streaming matrices

- A dxn matrix
- Rows of A arrive in a stream
- Task: compute

$$AA^T = \sum_{i=1}^n A_i A_i^t$$

- Naive solution: Compute AA^T in time ${\cal O}(nd^2)$ and space ${\cal O}(d^2)$
- Think of d=10^6, n = 10^6

Goal

• Efficiently compute a concisely representable matrix B such that

$$B \approx A \text{ or } BB^T \approx AA^T$$

woking with **B** is good enough for many tasks

• Efficiently maintain matrix B with only $\ell=2/\epsilon$ such that

$$||AA^T - BB^T||_2 \le \epsilon ||A||_f^2$$

• obtain the frequency f(i) of each item in a stream of items

• With d counters it's easy but not good enough

• Lets keep less than a fixed number of counters

• If an item has a counter we add 1 to that counter

• Otherwise, we create a new counter for it and set it to 1

- But now we do not have less than ℓ counters

Frequent items $\delta = f_{\ell/2} = 2$

- Let δ be the median counter value at time t

- Decrease all counters by δ (or set to zero if less than δ)

• And continue....

• The approximated counts are f'

• We increase the count by only 1 for each item appearance

$$f'(i) \le f(i)$$

- Because we decrease each counter by at most δ_t at time t

$$f'(i) \ge f(i) - \sum_t \delta_t$$

• Calculating the total approximated frequencies:

$$\begin{split} 0 \leq \sum_{i} f'(i) \leq \sum_{t} \left(1 - (\ell/2)\delta_{t}\right) &= n - (\ell/2)\sum_{t} \delta_{t} \\ \sum_{t} \delta_{t} \leq 2n/\ell \\ \text{Setting } \ell &= 2/\epsilon \\ |f(i) - f'(i)| \leq \epsilon n \end{split}$$

• We keep a sketch of at most ℓ columns

Maintain the invariant that some of the columns are empty (zero-valued)

• Input vectors are simply stored in empty columns

• Input vectors are simply stored in empty columns

• When the sketch is ``full" we need to zero out some columns

• Using SVD we compute $B = USV^T$ and set $B_{new} = US$

• Note that $BB^T = B_{new}B^T_{new}$ so we don't ``lose" anything

The columns of B are now orthogonal and in decreasing magnitude order

Frequent directions $\twoheadrightarrow \delta = \|B_{\ell/2}\|^2$ d

• Let $\delta = ||B_{\ell/2}||^2$

- Reduce column $\,\ell_2^2 - {
m norms}\,$ by $\,\delta$ (or nullify if less)

• Start aggregating columns again

Input: ℓ , $A \in \mathbb{R}^{d \times n}$ $B \leftarrow$ all zeros matrix $\in \mathbb{R}^{d \times \ell}$ for $i \in [n]$ do Insert A_i into a zero valued column of Bif B has no zero valued colums then $[U, \Sigma, V] \leftarrow SVD(B)$ $\delta \leftarrow \sigma_{\ell/2}^2$ $\check{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)}$ $B \leftarrow U\check{\Sigma}$ # At least half the columns of B are zero.

Return: *B*

Frequent directions: proof

- Step 1: $||AA^T - BB^T|| \le \sum_{t=1}^n \delta_t$
- Step 2: $\sum_{t=1}^n \delta_t \leq 2||A||_f^2/\ell$
- Setting $\ell = 2/\epsilon$ yields

$$||AA^T - BB^T|| \le \epsilon ||A||_f^2$$

Error as a function of ℓ

