Dimensionality reduction



Outline

 Dimensionality Reductions or data
projections

 Random projections

* Singular Value Decomposition and Principal
Component Analysis (PCA)



The curse of dimensionality

* The efficiency of many algorithms
depends on the number of dimensions

— Distance/similarity computations are at
least linear to the number of dimensions

— Index structures fail as the dimensionality
of the data increases



Goals

* Reduce dimensionality of the data

* Maintain the meaningfulness of the
data



Dimensionality reduction
» Dataset X consisting of n points in a d-
dimensional space
 Data point x,eR“ (d-dimensional real
vector):
Xi = [Xi1s X255 Xigl
* Dimensionality reduction methods:

— Feature selection: choose a subset of the
features

— Feature extraction: create new features
by combining new ones



Dimensionality reduction

* Dimensionality reduction methods:

— Feature selection: choose a subset of the
features

— Feature extraction: create new features
by combining new ones

« Both methods map vector x.€R9, to
vector y, € R¥, (k<<d)

+ F: RISRK



Linear dimensionality
reduction

Function F is a linear projection
Yi = XA

Y=XA

Goal: Y is as close to X as possible



Closeness: Pairwise distances

 Johnson-Lindenstrauss lemma: Given
£>0, and an integer n, let k be a positive
integer such that k=k,=0(s"? logn). For

every set X of n points in RY there exists
F: Re>R*such that for all x;, x; €X

(1-8)|Ix; - x;1 2= [[FOx; )= FO) 2= (L+e)]x; - X2

What is the intuitive interpretation of
this statement?



JL Lemma: Intuition

. Vectors x.€RY are projected onto a k-
dimensional space (k<<d): y, = x. A

o If [[x||=1 for all i, then,

||xi—xj||2 is approximated by (d/k)IIyi—yjII2
* |Intuition:

— The expected squared norm of a projection of
a unit vector onto a random subspace
through the origin is k/d

— The probability that it deviates from
expectation is very small



Finding random projections

Vectors x.€RY, are projected onto a k-
dimensional space (k<<d)

Random projections can be

represented by linear transformation
matrix A

Yi =X A

What is the matrix A?



Finding random projections

Vectors x.€RY, are projected onto a k-
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Finding matrix A

Elements A(i,j) can be Gaussian distributed

Achlioptas®* has shown that the Gaussian
distribution can be replaced by

+ 1 with prob %

A, j) =4 O with prob%

— 1 with prob %

All zero mean, unit variance distributions for
,lA(l,J) would give a mapping that satisfies the JL
emma

Why is Achlioptas result useful?



Datasets in the form of
matrices

Given n objects and d features describing the objects.
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, A;; shows the “importance” of

feature j for object |i.
Every row of A represents an object.

Goal

1. Understand the structure of the data, e.g., the
underlying process generating the data.

2. Reduce the number of features representing the data




Market basket matrices

d products
(e.g., milk, bread, wine, etc.)

( 3

o A
customers
A;; = quantity of j-th product
purchased by the i-th
\ customer /

Find a subset of the products that
characterize customer behavior



Social-network matrices

d groups
(e.g., BU group, opera, etc.)

n users

A

A;; = partiticipation of
the i-th user in the j-th
group

Find a subset of the groups that accurately
clusters social-network users



Document matrices

d terms
(e.g., theorem, proof, etc.)

(

A

n

documents
A;; = frequency of the j-th

Qerm in the i-th document

Find a subset of the terms that accurately
clusters the documents



Recommendation systems

d products

n A

customers A;; = frequency of

the j-th product is
\ bought by the i—th /
customer

Find a subset of the products that
accurately describe the behavior or the
customers



The Singular Value
Decomposition (SVD)

Data matrices have n rows (one for
each object) and d columns (one
for each feature).

-(42)

Object d

feature 2

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle
between their corresponding
vectors is small. feature 1

(d,x Object x




SVD: Example

Input: 2-d dimensional
points

Output:

2nd (right)

1st (right) singular vector:
direction of maximal
variance,

2nd (right) singular vector:
direction of maximal variance,
. after removing the projection
of the data along the first
singular vector.

1st (right)

singular vector
I I I

4.5 5.0 5.5 6.0



Singular values

5
2nd (right)
4+ |
3_ —
1st (right)
singular vector
2 I I I
4.0 4.5 5.0 5.5

6.0

0,: measures how much of

the data variance is
explained by the first
singular vector.

0,: measures how much of

the data variance is
explained by the second
singular vector.



SVD decomposition
( \ )

N BN

\ A

nxd nx ¥4 2 x 2 2 xd

U (V): orthogonal matrix containing the left (right)

singular vectors of A.
>: diagonal matrix containing the singular values of A:

(020,22 ...20y)

Exact computation of the SVD takes O(min{mn?, m?n})

time.
The top k left/right singular vectors/values can be

computed faster using Lanczos/Arnoldi methods.



SVD and Rank-
approximations
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Rank-k approximations (A,)

( : )( v )

xd

N

>
Il

S

U, (V,): ort

(right) sing
2, : diagonal
values of A

A, is an approximation of A



SVD as an optimization

problem
Find C to minimize:

min, | 44— C X

nxd  nxk kxd|| [ Frobenius norm:

|4 =24

Given C it is easy to find X from standard
least squares.

However, the fact that we can find the
optimal C is fascinating!




SVD is “the Rolls-Royce and the
Swiss Army Knife of Numerical

Linear Algebra.”*
*Dianne O’Leary, MMDS ’06



Reference

Simple and Deterministic Matrix Sketching
Author: Edo Liberty, Yahoo! Labs
KDD 2013, Best paper award

Thanks Edo Liberty for the slides



Sketches of streaming matrices

A nxd matrix
« Rows of A arrive in a stream
* Task: compute

AAT = En: A; Al
1—=1



Sketches of streaming matrices

A dxn matrix
Rows of A arrive in a stream
Task: compute

AAT = zn: A Al
1=1

Naive solution: Compute AAT in time O(nd”)
and space O(d?)

Think of d=10A6, n = 10A6



Goal

4 )
- Efficiently compute a concisely representable matrix B such that

B~ Aor BB ~ AA?
woking with B is good enough for many tasks
\_ J

4 )
« Efficiently maintain matrix B with only V= 2/6 such that

|AA" — BB" |2 < €||A]|7




Frequent items

I
d < f(IR) =5
-

S U [y
J

|

n

« obtain the frequency f(i) of each item in a stream of items
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Frequent items
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d

« With d counters it’s easy but not good enough
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Fregquent Items

* Lets keep less than a fixed number of counters

32



Frequent items

 If an item has a counter we add 1 to that counter
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Frequent items

 Otherwise, we create a new counter for it and setitto 1
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Frequent items

l_Y_}

4

« But now we do not have less than £ counters
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Frequent items

/5f€/2—2
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4

e Let be the median counter value at time t
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Frequent items

+ Decrease all counters by O (or set to zero if less than 0)



Frequent items

 And continue....



Frequent items
f(m) =1

l J

 The approximated counts are f’
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Frequent items

We increase the count by only 1 for each item appearance
f1(@) < f(i)
Because we decrease each counter by at most 575 at time ?
-0
t
Calculating the total approximated frequencies:
O<Zf <Z (1= (£/2)86;) =n — (£/2) 2575

Zat < 2n/l

Setting ¢ = 2
g L=2/¢ )~ o) < en



Frequent directions
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« We keep a sketch of at most ¢ columns



Frequent directions
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* Maintain the invariant that some of the columns are empty
(zero-valued)



Frequent directions

gjeojgoen

08 0j@a0eae
g 00/0/@00

— (]

—
—

/4

* Input vectors are simply stored in empty columns



Frequent directions
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Input vectors are simply stored in empty columns



Frequent directions
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« When the sketch is = full” we need to zero out some columns



Frequent directions
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« Using SVD we compute B =USVT and set B,,., = US



Frequent directions

B=USvT
|

Bpew = Us VT
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Note that BB! = B,,..,B’

~ew SO We don’t * lose” anything



Frequent directions
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The columns of B are now orthogonal and in decreasing
magnitude order



Frequent directions

/’ 0 = ||B«ff/2||2
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Frequent directions
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* Reduce column Eg — norms by O (or nullify if less)



Frequent directions
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« Start aggregating columns again



Frequent directions

Input: ¢, A c RIX"
B « all zeros matrix € RY*¢
for i € [n] do
Insert A; into a zero valued column of B
if B has no zero valued colums then
[U,%, V] + SVD(B)
d 05/2
> ¢+ y/max(X2 — I,6,0)
B «+ UX # At least half the columns of B are zero.
Return: B




Frequent directions: proof

» Step 1: ,
|AAT — BBT|| <} 4
t=1

* Step 2:
D 6 <2||Al3 /¢
t=1

 Setting ¢ = 2/¢ yields

JAAT — BBY|| < ¢]|Al[7



Error as a function of /

Sketch accuracy

==& Naive
== Sampling
==r=Hashing
== Random Projections

== Frequent Directions Bound
“=@=Frequent Directions

=== Brute Force
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