
Dimensionality reduction



Outline

• Dimensionality Reductions or data 
projections

• Random projections

• Singular Value Decomposition and Principal 
Component Analysis (PCA)



The curse of dimensionality
• The efficiency of many algorithms 

depends on the number of dimensions d

– Distance/similarity computations are at 
least linear to the number of dimensions

– Index structures fail as the dimensionality 
of the data increases



Goals
• Reduce dimensionality of the data

• Maintain the meaningfulness of the 
data



Dimensionality reduction
• Dataset X consisting of n points in a d-

dimensional space
• Data point xiєRd (d-dimensional real 

vector): 
 xi = [xi1, xi2,…, xid]
• Dimensionality reduction methods:
– Feature selection: choose a subset of the 

features
– Feature extraction: create new features 

by combining new ones



Dimensionality reduction
• Dimensionality reduction methods:
– Feature selection: choose a subset of the 

features
– Feature extraction: create new features 

by combining new ones
• Both methods map vector xiєRd, to 

vector yi є Rk, (k<<d)

• F : RdRk



Linear dimensionality 
reduction

• Function F is a linear projection
• yi = xi A

• Y = X A

• Goal: Y is as close to X as possible



Closeness: Pairwise distances
• Johnson-Lindenstrauss lemma: Given 
ε>0, and an integer n, let k be a positive 
integer such that k≥k0=O(ε-2 logn). For 
every set X of n points in Rd there exists 
F: RdRk such that for all xi, xj єX

 (1-ε)||xi - xj||2≤ ||F(xi )- F(xj)||2≤ (1+ε)||xi - xj||2

What is the intuitive interpretation of 
this statement?



JL Lemma: Intuition
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d): yi = xi A
• If ||xi||=1 for all i, then, 
 ||xi-xj||2 is approximated by (d/k)||yi-yj||2 
• Intuition: 
– The expected squared norm of a projection of 

a unit vector onto a random subspace 
through the origin is k/d

– The probability that it deviates from 
expectation is very small



Finding random projections
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d)
• Random projections can be 

represented by linear transformation 
matrix A

• yi = xi A 

• What is the matrix A? 



Finding random projections
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d)
• Random projections can be 

represented by linear transformation 
matrix A

• yi = xi A

• What is the matrix A? 



Finding matrix A
• Elements A(i,j) can be Gaussian distributed 
• Achlioptas* has shown that the Gaussian 

distribution can be replaced by

• All zero mean, unit variance distributions for 
A(i,j) would give a mapping that satisfies the JL 
lemma

• Why is Achlioptas result useful?



Datasets in the form of 
matrices

Given n objects and d features describing the objects. 
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, Aij shows the “importance” of 
feature j for object i.
Every row of A represents an object.

Goal
1. Understand the structure of the data, e.g., the 

underlying process generating the data.
2. Reduce the number of features representing the data



Market basket matrices

n 
customers

d products 
(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th product 
purchased by the i-th 
customer

Find  a subset of the products that 
characterize customer behavior



Social-network matrices

n users

d groups 
(e.g., BU group, opera, etc.)

Aij = partiticipation of 
the i-th user in the  j-th 
group

Find  a subset of the groups that accurately 
clusters social-network users



Document matrices

n 
documents

d terms 
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th 
term in the i-th document

Find  a subset of the terms that accurately 
clusters the documents



Recommendation systems

n 
customers

d products 

Aij = frequency of 
the j-th  product is 
bought by the i-th 
customer

Find  a subset of the products that 
accurately describe the behavior or the 

customers



The Singular Value 
Decomposition (SVD)

Data matrices have n rows (one for 
each object) and d columns (one 
for each feature).

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle 
between their corresponding 
vectors is small. 



SVD: Example
Input: 2-d dimensional 
points

Output: 

1st (right) 
singular vector

1st (right) singular vector: 
direction of maximal 
variance,

2nd (right) 
singular 
vector

2nd (right) singular vector: 
direction of maximal variance, 
after removing the projection 
of the data along the first 
singular vector.



Singular values

σ1: measures how much of 
the data variance is 
explained by the first 
singular vector.

σ2: measures how much of 
the data variance is 
explained by the second 
singular vector.

σ1
1st (right) 
singular vector

2nd (right) 
singular 
vector



SVD decomposition

U (V): orthogonal matrix containing the left (right) 
singular vectors of A.
Σ: diagonal matrix containing the singular values of A: 
(σ1 ≥ σ2 ≥ … ≥ σℓ )

    
 Exact computation of the SVD takes O(min{mn2 , m2n}) 

time. 
 The top k left/right singular vectors/values can be 

computed faster using Lanczos/Arnoldi methods.
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Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left 
(right) singular vectors of A.
Σk: diagonal matrix containing the top k singular 
values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best 
approximation 

of A



SVD as an optimization 
problem

Given C it is easy to find X from standard 
least squares.
However, the fact that we can find the 
optimal C  is fascinating!

Frobenius norm:

Find C to minimize:



SVD is “the Rolls-Royce and the 
Swiss Army Knife of Numerical 
Linear Algebra.”*
*Dianne O’Leary, MMDS ’06



Reference
Simple and Deterministic Matrix Sketching 

Author: Edo Liberty, Yahoo! Labs
KDD 2013, Best paper award

Thanks Edo Liberty for the slides
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Sketches of streaming matrices

• A nxd matrix
• Rows of A arrive in a stream 
• Task: compute

27

AAT =
nX

i=1

AiA
t
i



Sketches of streaming matrices

• A dxn matrix
• Rows of A arrive in a stream 
• Task: compute

• Naive solution: Compute          in time                      
and space

• Think of d=10^6, n = 10^6   
28

AAT =
nX

i=1

AiA
t
i

AAT O(nd2)
O(d2)



Goal
• Efficiently compute a concisely representable matrix B such that               

woking with B is good enough for many tasks

29

B ⇡ A or BBT ⇡ AAT

• Efficiently maintain matrix B with only                 such that            ` = 2/✏

||AAT �BBT ||2  ✏||A||2f



Frequent items

• obtain the frequency f(i) of each item in a stream of items

30

�r����nt It�� �

Obtain the frequency f (i) of each item in the stream of items
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Frequent items

• With d counters it’s easy but not good enough

31

Frequent Items

With d counters it’s easy but not good enough (IP addresses, queries....)
Edo Liberty: Simple and Deterministic Matrix Sketches 11 / 38



Frequent Items

• Lets keep less than a fixed number of counters
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Frequent Items

(Misra-Gries) Lets keep less than a fixed number of counters `.
Edo Liberty: Simple and Deterministic Matrix Sketches 12 / 38



Frequent items

• If an item has a counter we add 1 to that counter
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Frequent Items

If an item has a counter we add 1 to that counter.
Edo Liberty: Simple and Deterministic Matrix Sketches 13 / 38



Frequent items

• Otherwise, we create a new counter for it and set it to 1
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Frequent Items

Otherwise, we create a new counter for it and set it to 1
Edo Liberty: Simple and Deterministic Matrix Sketches 14 / 38



Frequent items

• But now we do not have less than    counters
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`

Frequent Items

But now we do not have less than ` counters.
Edo Liberty: Simple and Deterministic Matrix Sketches 15 / 38



Frequent items

• Let    be the median counter value at time t

36

�

Frequent Items

Let � be the median counter value at time t
Edo Liberty: Simple and Deterministic Matrix Sketches 16 / 38



Frequent items

• Decrease all counters by    (or set to zero if less than   )

37

� �

Frequent Items

Decrease all counters by � (or set to zero if less than �)
Edo Liberty: Simple and Deterministic Matrix Sketches 17 / 38



Frequent items

• And continue....
38

Frequent Items

And continue...
Edo Liberty: Simple and Deterministic Matrix Sketches 18 / 38



Frequent items

• The approximated counts are f’
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Frequent Items

The approximated counts are f 0

Edo Liberty: Simple and Deterministic Matrix Sketches 19 / 38



Frequent items
• We increase the count by only 1 for each item appearance

• Because we decrease each counter by at most     at time 

• Calculating the total approximated frequencies:

• Setting 
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Frequent directions

• We keep a sketch of at most    columns

41

`

Frequent Directions

We keep a sketch of at most ` columns

Edo Liberty: Simple and Deterministic Matrix Sketches 21 / 38



Frequent directions

• Maintain the invariant that some of the columns are empty 
(zero-valued)
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Frequent Directions

We keep a sketch of at most ` columns

Edo Liberty: Simple and Deterministic Matrix Sketches 21 / 38



Frequent directions

• Input vectors are simply stored in empty columns
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Frequent Directions

Input vectors are simply stored in empty columns

Edo Liberty: Simple and Deterministic Matrix Sketches 23 / 38



Frequent directions

• Input vectors are simply stored in empty columns
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Frequent Directions

Input vectors are simply stored in empty columns

Edo Liberty: Simple and Deterministic Matrix Sketches 24 / 38



Frequent directions

• When the sketch is ``full” we need to zero out some columns
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Frequent Directions

When the sketch is ‘full’ we need to zero out some columns...

Edo Liberty: Simple and Deterministic Matrix Sketches 25 / 38



Frequent directions

• Using SVD we compute 

46

B = USV T and set Bnew = US

Frequent Directions

Using the SVD we compute B = USV T and set Bnew = US

Edo Liberty: Simple and Deterministic Matrix Sketches 26 / 38



Frequent directions

• Note that                                   so we don’t ``lose” anything  
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Frequent Directions

Using the SVD we compute B = USV T and set Bnew = US

Edo Liberty: Simple and Deterministic Matrix Sketches 26 / 38

BBT = BnewB
T
new



Frequent directions

• The columns of B are now orthogonal and in decreasing 
magnitude order 
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Frequent Directions

The columns of B are now orthogonal and in decreasing magnitude order

Edo Liberty: Simple and Deterministic Matrix Sketches 28 / 38



Frequent directions

• Let 
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� = ||B`/2||2

Frequent Directions

Let � = kB`/2k2

Edo Liberty: Simple and Deterministic Matrix Sketches 29 / 38



Frequent directions
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• Reduce column                       by     (or nullify if less)`22 � norms �

Frequent Directions

Reduce column `22-norms by � (or nullify if less than �)

Edo Liberty: Simple and Deterministic Matrix Sketches 30 / 38



Frequent directions

51

• Start aggregating columns again 

Frequent Directions

Start aggregating columns again...

Edo Liberty: Simple and Deterministic Matrix Sketches 31 / 38



Frequent directions
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Frequent Directions

Input: `, A 2 Rd⇥n

B  all zeros matrix 2 Rd⇥`

for i 2 [n] do
Insert Ai into a zero valued column of B
if B has no zero valued colums then

[U,⌃,V ] SVD(B)
�  �2

`/2

⌃̌ 
p

max(⌃2 � I`�, 0)
B  U⌃̌ # At least half the columns of B are zero.

Return: B

Edo Liberty: Simple and Deterministic Matrix Sketches 32 / 38



||AAT �BBT ||  ✏||A||2f

Frequent directions: proof
• Step 1:

• Step 2:

• Setting           yields
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||AAT �BBT || 
nX

t=1

�t

nX

t=1

�t  2||A||2f/`

` = 2/✏



Error as a function of 
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`
Experiments

kAAT � BBTk as a function of the sketch size `

0"

2,000"

4,000"

6,000"

8,000"

10,000"

12,000"

14,000"

16,000"

18,000"

20,000"

10
"

20
"

30
"

40
"

50
"

60
"

70
"

80
"

90
"

10
0"

11
0"

12
0"

13
0"

14
0"

15
0"

16
0"

17
0"

18
0"

19
0"

20
0"

Sk
et
ch
'a
cc
ur
ac
y'

Number'of'rows'in'sketch'

Naive"
Sampling"
Hashing"
Random"ProjecBons"
Frequent"DirecBons"Bound"
Frequent"DirecBons"
Brute"Force"

Synthetic input matrix with linearly decaying singular values.

Edo Liberty: Simple and Deterministic Matrix Sketches 36 / 38


