
Dimensionality reduction

Outline

• Dimensionality Reductions or data
projections

• Random projections

• Singular Value Decomposition and Principal
Component Analysis (PCA)

The curse of dimensionality
• The efficiency of many algorithms

depends on the number of dimensions d

– Distance/similarity computations are at
least linear to the number of dimensions

– Index structures fail as the dimensionality
of the data increases

Goals
• Reduce dimensionality of the data

• Maintain the meaningfulness of the
data

Dimensionality reduction
• Dataset X consisting of n points in a d-

dimensional space
• Data point xiєRd (d-dimensional real

vector):

 xi = [xi1, xi2,…, xid]
• Dimensionality reduction methods:
– Feature selection: choose a subset of the

features
– Feature extraction: create new features

by combining new ones

Dimensionality reduction
• Dimensionality reduction methods:
– Feature selection: choose a subset of the

features
– Feature extraction: create new features

by combining new ones
• Both methods map vector xiєRd, to

vector yi є Rk, (k<<d)

• F : RdRk

Linear dimensionality
reduction

• Function F is a linear projection
• yi = xi A

• Y = X A

• Goal: Y is as close to X as possible

Closeness: Pairwise distances
• Johnson-Lindenstrauss lemma: Given
ε>0, and an integer n, let k be a positive
integer such that k≥k0=O(ε-2 logn). For
every set X of n points in Rd there exists
F: RdRk such that for all xi, xj єX

 (1-ε)||xi - xj||2≤ ||F(xi)- F(xj)||2≤ (1+ε)||xi - xj||2

What is the intuitive interpretation of
this statement?

JL Lemma: Intuition
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d): yi = xi A
• If ||xi||=1 for all i, then,

 ||xi-xj||2 is approximated by (d/k)||yi-yj||2
• Intuition:
– The expected squared norm of a projection of

a unit vector onto a random subspace
through the origin is k/d

– The probability that it deviates from
expectation is very small

Finding random projections
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d)
• Random projections can be

represented by linear transformation
matrix A

• yi = xi A

• What is the matrix A?

Finding random projections
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d)
• Random projections can be

represented by linear transformation
matrix A

• yi = xi A

• What is the matrix A?

Finding matrix A
• Elements A(i,j) can be Gaussian distributed
• Achlioptas* has shown that the Gaussian

distribution can be replaced by

• All zero mean, unit variance distributions for
A(i,j) would give a mapping that satisfies the JL
lemma

• Why is Achlioptas result useful?

Datasets in the form of
matrices

Given n objects and d features describing the objects.
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, Aij shows the “importance” of
feature j for object i.
Every row of A represents an object.

Goal
1. Understand the structure of the data, e.g., the

underlying process generating the data.
2. Reduce the number of features representing the data

Market basket matrices

n
customers

d products
(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th product
purchased by the i-th
customer

Find a subset of the products that
characterize customer behavior

Social-network matrices

n users

d groups
(e.g., BU group, opera, etc.)

Aij = partiticipation of
the i-th user in the j-th
group

Find a subset of the groups that accurately
clusters social-network users

Document matrices

n
documents

d terms
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th
term in the i-th document

Find a subset of the terms that accurately
clusters the documents

Recommendation systems

n
customers

d products

Aij = frequency of
the j-th product is
bought by the i-th
customer

Find a subset of the products that
accurately describe the behavior or the

customers

The Singular Value
Decomposition (SVD)

Data matrices have n rows (one for
each object) and d columns (one
for each feature).

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle
between their corresponding
vectors is small.

SVD: Example
Input: 2-d dimensional
points

Output:

1st (right)
singular vector

1st (right) singular vector:
direction of maximal
variance,

2nd (right)
singular
vector

2nd (right) singular vector:
direction of maximal variance,
after removing the projection
of the data along the first
singular vector.

Singular values

σ1: measures how much of
the data variance is
explained by the first
singular vector.

σ2: measures how much of
the data variance is
explained by the second
singular vector.

σ1
1st (right)
singular vector

2nd (right)
singular
vector

SVD decomposition

U (V): orthogonal matrix containing the left (right)
singular vectors of A.
Σ: diagonal matrix containing the singular values of A:
(σ1 ≥ σ2 ≥ … ≥ σℓ)

 Exact computation of the SVD takes O(min{mn2 , m2n})

time.

 The top k left/right singular vectors/values can be

computed faster using Lanczos/Arnoldi methods.

0

0

n x d n x ℓ ℓ x ℓ ℓ x d

A VTΣU=

objects

features

significant

noise
no

is
e noise

si
gn

ifi
ca

nt
sig.

=

SVD and Rank-k
approximations

Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left
(right) singular vectors of A.
Σk: diagonal matrix containing the top k singular
values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best
approximation

of A

SVD as an optimization
problem

Given C it is easy to find X from standard
least squares.
However, the fact that we can find the
optimal C is fascinating!

Frobenius norm:

Find C to minimize:

SVD is “the Rolls-Royce and the
Swiss Army Knife of Numerical
Linear Algebra.”*
*Dianne O’Leary, MMDS ’06

Reference
Simple and Deterministic Matrix Sketching

Author: Edo Liberty, Yahoo! Labs
KDD 2013, Best paper award

Thanks Edo Liberty for the slides

26

Sketches of streaming matrices

• A nxd matrix
• Rows of A arrive in a stream
• Task: compute

27

AAT =
nX

i=1

AiA
t
i

Sketches of streaming matrices

• A dxn matrix
• Rows of A arrive in a stream
• Task: compute

• Naive solution: Compute in time
and space

• Think of d=10^6, n = 10^6
28

AAT =
nX

i=1

AiA
t
i

AAT O(nd2)
O(d2)

Goal
• Efficiently compute a concisely representable matrix B such that

woking with B is good enough for many tasks

29

B ⇡ A or BBT ⇡ AAT

• Efficiently maintain matrix B with only such that ` = 2/✏

||AAT �BBT ||2  ✏||A||2f

Frequent items

• obtain the frequency f(i) of each item in a stream of items

30

�r����nt It�� �

Obtain the frequency f (i) of each item in the stream of items
�d� �i��rt�� Si� p�� �nd D�t�r� ini�ti� M�trix S��t���� �� � ��

Frequent items

• With d counters it’s easy but not good enough

31

Frequent Items

With d counters it’s easy but not good enough (IP addresses, queries....)
Edo Liberty: Simple and Deterministic Matrix Sketches 11 / 38

Frequent Items

• Lets keep less than a fixed number of counters

32

Frequent Items

(Misra-Gries) Lets keep less than a fixed number of counters `.
Edo Liberty: Simple and Deterministic Matrix Sketches 12 / 38

Frequent items

• If an item has a counter we add 1 to that counter

33

Frequent Items

If an item has a counter we add 1 to that counter.
Edo Liberty: Simple and Deterministic Matrix Sketches 13 / 38

Frequent items

• Otherwise, we create a new counter for it and set it to 1

34

Frequent Items

Otherwise, we create a new counter for it and set it to 1
Edo Liberty: Simple and Deterministic Matrix Sketches 14 / 38

Frequent items

• But now we do not have less than counters

35

`

Frequent Items

But now we do not have less than ` counters.
Edo Liberty: Simple and Deterministic Matrix Sketches 15 / 38

Frequent items

• Let be the median counter value at time t

36

�

Frequent Items

Let � be the median counter value at time t
Edo Liberty: Simple and Deterministic Matrix Sketches 16 / 38

Frequent items

• Decrease all counters by (or set to zero if less than)

37

� �

Frequent Items

Decrease all counters by � (or set to zero if less than �)
Edo Liberty: Simple and Deterministic Matrix Sketches 17 / 38

Frequent items

• And continue....
38

Frequent Items

And continue...
Edo Liberty: Simple and Deterministic Matrix Sketches 18 / 38

Frequent items

• The approximated counts are f’

39

Frequent Items

The approximated counts are f 0

Edo Liberty: Simple and Deterministic Matrix Sketches 19 / 38

Frequent items
• We increase the count by only 1 for each item appearance

• Because we decrease each counter by at most at time

• Calculating the total approximated frequencies:

• Setting

40

�t t

f 0(i)  f(i)

f 0(i) � f(i)�
X

t

�t

0 
X

i

f 0(i) 
X

t

(1� (`/2)�t) = n� (`/2)
X

t

�t

X

t

�t  2n/`

` = 2/✏
|f(i)� f 0(i)|  ✏n

Frequent directions

• We keep a sketch of at most columns

41

`

Frequent Directions

We keep a sketch of at most ` columns

Edo Liberty: Simple and Deterministic Matrix Sketches 21 / 38

Frequent directions

• Maintain the invariant that some of the columns are empty
(zero-valued)

42

Frequent Directions

We keep a sketch of at most ` columns

Edo Liberty: Simple and Deterministic Matrix Sketches 21 / 38

Frequent directions

• Input vectors are simply stored in empty columns

43

Frequent Directions

Input vectors are simply stored in empty columns

Edo Liberty: Simple and Deterministic Matrix Sketches 23 / 38

Frequent directions

• Input vectors are simply stored in empty columns

44

Frequent Directions

Input vectors are simply stored in empty columns

Edo Liberty: Simple and Deterministic Matrix Sketches 24 / 38

Frequent directions

• When the sketch is ``full” we need to zero out some columns

45

Frequent Directions

When the sketch is ‘full’ we need to zero out some columns...

Edo Liberty: Simple and Deterministic Matrix Sketches 25 / 38

Frequent directions

• Using SVD we compute

46

B = USV T and set Bnew = US

Frequent Directions

Using the SVD we compute B = USV T and set Bnew = US

Edo Liberty: Simple and Deterministic Matrix Sketches 26 / 38

Frequent directions

• Note that so we don’t ``lose” anything

47

Frequent Directions

Using the SVD we compute B = USV T and set Bnew = US

Edo Liberty: Simple and Deterministic Matrix Sketches 26 / 38

BBT = BnewB
T
new

Frequent directions

• The columns of B are now orthogonal and in decreasing
magnitude order

48

Frequent Directions

The columns of B are now orthogonal and in decreasing magnitude order

Edo Liberty: Simple and Deterministic Matrix Sketches 28 / 38

Frequent directions

• Let

49

� = ||B`/2||2

Frequent Directions

Let � = kB`/2k2

Edo Liberty: Simple and Deterministic Matrix Sketches 29 / 38

Frequent directions

50

• Reduce column by (or nullify if less)`22 � norms �

Frequent Directions

Reduce column `22-norms by � (or nullify if less than �)

Edo Liberty: Simple and Deterministic Matrix Sketches 30 / 38

Frequent directions

51

• Start aggregating columns again

Frequent Directions

Start aggregating columns again...

Edo Liberty: Simple and Deterministic Matrix Sketches 31 / 38

Frequent directions

52

Frequent Directions

Input: `, A 2 Rd⇥n

B all zeros matrix 2 Rd⇥`

for i 2 [n] do
Insert Ai into a zero valued column of B
if B has no zero valued colums then

[U,⌃,V] SVD(B)
� �2

`/2

⌃̌
p

max(⌃2 � I`�, 0)
B U⌃̌ # At least half the columns of B are zero.

Return: B

Edo Liberty: Simple and Deterministic Matrix Sketches 32 / 38

||AAT �BBT ||  ✏||A||2f

Frequent directions: proof
• Step 1:

• Step 2:

• Setting yields

53

||AAT �BBT || 
nX

t=1

�t

nX

t=1

�t  2||A||2f/`

` = 2/✏

Error as a function of

54

`
Experiments

kAAT � BBTk as a function of the sketch size `

0"

2,000"

4,000"

6,000"

8,000"

10,000"

12,000"

14,000"

16,000"

18,000"

20,000"

10
"

20
"

30
"

40
"

50
"

60
"

70
"

80
"

90
"

10
0"

11
0"

12
0"

13
0"

14
0"

15
0"

16
0"

17
0"

18
0"

19
0"

20
0"

Sk
et
ch
'a
cc
ur
ac
y'

Number'of'rows'in'sketch'

Naive"
Sampling"
Hashing"
Random"ProjecBons"
Frequent"DirecBons"Bound"
Frequent"DirecBons"
Brute"Force"

Synthetic input matrix with linearly decaying singular values.

Edo Liberty: Simple and Deterministic Matrix Sketches 36 / 38

