CAS CS 131 - Combinatorial Structures
 Spring 2011

Problem Set \#1 (Logic \& Proofs, Proofs by Induction)
Out: Tuesday, January 25
Due: Tuesday, February 1

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually.

1. Classify each of the following statements as true, false, or not a proposition. Explain your answers: If the statement is a proposition, prove or disprove it. If it is not a proposition, state why.
(a) An integer is a rational number.
(b) 5 is an even number and $16^{-\frac{1}{4}}=\frac{1}{2}$.
(c) Let n denote a positive integer.
(d) If a and b are integers with $a-b \geq 0$ and $b-a \geq 0$, then $a=b$.
2. Determine whether the following implication is true. If it is true, provide a proof. If it is not true, provide a counterexample.
" x is an even integer $\Longrightarrow x+2$ is an even integer."
3. Prove that the equations
$2 x+3 y-z=5$
$x-2 y+3 z=7$
$x+5 y-4 z=0$
have no solution. (Give a proof by contradiction.)
4. Prove that the sum of a rational and an irrational number is irrational. (Use proof by contradiction.)
5. Use (weak) induction to prove that, for all real values a and d :

$$
a+(a+d)+(a+2 d)+(a+3 d) \cdots+(a+(n-1) d)=a n+\frac{d(n-1) n}{2}
$$

6. Use (weak) induction to prove that
$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$
for all $n \geq 2$.
