CAS CS 131 - Combinatorial Structures

Spring 2011
Problem Set \#3 (Sums)
Out: Thursday, February 17
Due: Thursday, February 24

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually.

1. You had previously proved by induction that, for any natural number $n \geq 1$,
$1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Use this result to evaluate the following sum.

$$
\sum_{k=n+1}^{2 n} k^{2}
$$

2. You had previously proved by induction that, for all real values $r \neq 1$:
$1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}$, for any natural number $n \geq 0$.
Use this result to evaluate the following sum.

$$
\sum_{i=0}^{n} \sum_{j=0}^{m} 3^{i+j}
$$

3. Tommy the Monster is a financial service provider who offers loans on the following terms.

- Tommy loans a client m dollars in the morning. This puts the client m dollars in debt to Tommy.
- Each evening, Tommy first charges a "service fee", which increases the client's debt by f dollars, and then Tommy charges interest, which multiplies the debt by a factor of p. For example, if Tommy's interest rate were a modest 5% per day, then p would be 1.05 .
(a) What is the client's debt at the end of the first day?
(b) What is the client's debt at the end of the second day?
(c) Write a formula for the client's debt after d days and find an equivalent closed form.

4. You have seen this so-called "perturbation" method to evaluate a geometric sum:

$$
\begin{aligned}
S & =1+z+z^{2}+\cdots+z^{n} \\
z S & =z+z^{2}+\cdots+z^{n}+z^{n+1} \\
S-z S & =1-z^{n+1} \\
S & =\frac{1-z^{n+1}}{1-z}
\end{aligned}
$$

Use the same approach to find a closed-form expression for this sum:

$$
T=z+2 z^{2}+3 z^{3}+\cdots+n z^{n}
$$

5. Find a closed-form expression equal to the following sum. Show your work.

$$
\sum_{j=1}^{n} \sum_{i=0}^{\infty} j^{5 / 3}\left(1-\frac{1}{2 j^{1 / 3}}\right)^{i}
$$

