CAS CS 131 - Combinatorial Structures Spring 2011

PROBLEM SET #3 (SUMS) OUT: THURSDAY, FEBRUARY 17 DUE: THURSDAY, FEBRUARY 24

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually.

1. You had previously proved by induction that, for any natural number $n \ge 1$, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$

Use this result to evaluate the following sum.

$$\sum_{k=n+1}^{2n} k^2$$

2. You had previously proved by induction that, for all real values $r \neq 1$: $1 + r + r^2 + r^3 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$, for any natural number $n \ge 0$.

Use this result to evaluate the following sum.

$$\sum_{i=0}^{n} \sum_{j=0}^{m} 3^{i+j}$$

- 3. Tommy the Monster is a financial service provider who offers loans on the following terms.
 - Tommy loans a client m dollars in the morning. This puts the client m dollars in debt to Tommy.
 - Each evening, Tommy first charges a "service fee", which increases the client's debt by f dollars, and then Tommy charges interest, which multiplies the debt by a factor of p. For example, if Tommy's interest rate were a modest 5% per day, then p would be 1.05.
 - (a) What is the client's debt at the end of the first day?
 - (b) What is the client's debt at the end of the second day?
 - (c) Write a formula for the client's debt after d days and find an equivalent closed form.
- 4. You have seen this so-called "perturbation" method to evaluate a geometric sum:

$$S = 1 + z + z^{2} + \dots + z^{n}$$

$$zS = z + z^{2} + \dots + z^{n} + z^{n+1}$$

$$S - zS = 1 - z^{n+1}$$

$$S = \frac{1 - z^{n+1}}{1 - z}$$

Use the same approach to find a closed-form expression for this sum: $T=z+2z^2+3z^3+\cdots+nz^n$

5. Find a closed-form expression equal to the following sum. Show your work.

$$\sum_{j=1}^{n} \sum_{i=0}^{\infty} j^{5/3} \left(1 - \frac{1}{2j^{1/3}} \right)^i$$