CAS CS 131-Combinatorial Structures - Spring 2011
 Problem Set \#7 (More Counting)
 Out: Tuesday, April 12. Due: Tuesday, April 19

 NO LATE SUBMISSIONS WILL BE ACCEPTED

 NO LATE SUBMISSIONS WILL BE ACCEPTED}

To be completed individually.

1. How many $n \times n$ matrices are there with distinct entries drawn from $\{1,2, \cdots, p\}$, where $p \geq n^{2}$?
2. In the last problem set you were asked to find an appropriate bijective mapping between a set of sequences and each of the following sets in question. You are now asked to use these mappings to solve each of the following problems.
(a) In how many ways can k elements be chosen from an n-element set $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$?
(b) How many different ways are there to select a dozen donuts if five varieties are available?
(c) How many different solutions over the natural numbers are there to the equation: $x_{1}+$ $x_{2}+x_{3}+\cdots+x_{8}=90$? A solution is a specification of the value of each variable x_{i}. Two solutions are different if different values are specified for some variable x_{i}.
(d) An electronic toy displays a 3×3 grid of colored squares. At all times, three are red, three are green, and three are yellow. How many such configurations are possible?
3. In how many different ways can Blockbuster arrange 64 copies of Despicable Me, 96 copies of Toy Story 3, 55 copies of Robin Hood and 1 copy of Shrek Goes Fourth on a shelf? What if they are to be arranged in 5 shelves?
4. From 150 used cars sitting on a lot, 20 are to be selected for a test designed to check certain safety requirements. These cars will then be put back onto the lot and, again, 20 will be selected for a test designed to check antipollution standards.
(a) In how many ways can the first selection be made?
(b) In how many ways can the second selection be made?
(c) In how many ways can both selections be made?
(d) In how many ways can both selections be made if exactly eight cars are to undergo both tests?
5. You want to choose a team of m people from a pool of n people for your startup company, and from these m people you want to choose k to be the team managers. You took cs131, so you know you can do this in

$$
\binom{n}{m}\binom{m}{k}
$$

ways. But your CFO, who went to Harvard Business School, comes up with the formula

$$
\binom{n}{k}\binom{n-k}{m-k}
$$

Before doing the reasonable thing-dump on your CFO or Harvard Business School-you decide to check his answer against yours.
(a) Start by giving an algebraic proof that your CFO's formula agrees with yours.
(b) Now give a combinatorial argument proving this same fact.

