CAS CS 131 - Combinatorial Structures
 Spring 2012

Problem Set \#1 (Logic \& Proofs, Proofs by Induction)
Out: Thursday, January 26
Due: Thursday, February 2 at 2pm

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually.

1. Classify each of the following statements as true, false, or not a proposition. Explain your answers: If the statement is a proposition, prove or disprove it. If it is not a proposition, state why.
(a) An integer is a rational number.
(b) 5 is an even number and $16^{-\frac{1}{4}}=\frac{1}{2}$.
(c) Let n denote a positive integer.
(d) If a and b are integers with $a-b \geq 0$ and $b-a \geq 0$, then $a=b$.
2. Determine whether the statement is true or false. Explain your answers.
(a) $5 \subset\{1,2,3,4,5\}$
(b) $3 \in\{1,2,3,4,5\}$
(c) $\{3,5\} \in\{1,2,3,4,5\}$
(d) $\{3,5\} \subset\{x \mid(x=2 * k+1) \wedge k \in \mathbf{N}\}$
3. Prove that the equations
$2 x+3 y-z=5$
$x-2 y+3 z=7$
$x+5 y-4 z=0$
have no solution. (Give a proof by contradiction.)
4. Prove that the sum of a rational and an irrational number is irrational. (Use proof by contradiction.)
5. Use induction to prove that

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n^{3}}{3}-\frac{n^{2}}{2}+\frac{n}{6},
$$

for every natural number n.

