CAS CS 131 - Combinatorial Structures Spring 2013

PROBLEM SET #3 (PROOFS) OUT: THURSDAY, FEBRUARY 13 DUE: THURSDAY, FEBRUARY 21

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually.

- 1. Suppose a and b are real numbers. Prove that if a < b < 0 then $a^2 > b^2$.
- 2. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.
- 3. Suppose that $A \setminus B$ is disjoint from C and $x \in A$. Prove that if $x \in C$ then $x \in B$.
- 4. Suppose that y + x = 2y x, and x and y are not both zero. Prove that $y \neq 0$.
- 5. Suppose that x and y are real numbers. Prove that if $x^2y = 2x + y$, then if $y \neq 0$ then $x \neq 0$.
- 6. Suppose that x is a real number.
 - Prove that if $x \neq 1$ then there is a real number y such that $\frac{y+1}{y-2} = x$.
 - Prove that if there is a real number y such that $\frac{y+1}{y-2} = x$, then $x \neq 1$.
- 7. Prove that for all real numbers x and y there is a real number z such that x + z = y z.
 - Would the statement in part (a) be correct if "real number" were changed to "integer"? Justify your answer.
- 8. Consider the following putative theorem:

Theorem? For all real numbers x and y, $x^2 + xy - 2y^2 = 0$.

• What's wrong with the following proof of the theorem?

Proof: Let x and y be equal to some arbitrary real number r. Then

$$x^{2} + xy - 2y^{2} = r^{2} + r \cdot r - 2r^{2} = 0.$$

Since x and y were both arbitrary, this shows that for all real numbers x and y, we have $x^2 + xy - 2y^2 = 0$.

• Is this theorem correct? Justify your answer with either a proof or a counterexample.