CAS CS 131 - Combinatorial Structures Spring 2013

PROBLEM SET #6 (SUMMATIONS AND ASYMPTOTIC NOTATION) OUT: MONDAY, MARCH 25 DUE: TUESDAY, APRIL 2

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually.

1. You had previously proved by induction that, for any natural number $n \ge 1$, $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Use this result to evaluate the following sum.

$$\sum_{k=n+1}^{2n} k^2$$

2. You had previously proved by induction that, for all real values $r \neq 1$: $1 + r + r^2 + r^3 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$, for any natural number $n \ge 0$. Use this result to evaluate the following sum.

$$\sum_{i=0}^{n} \sum_{j=0}^{m} 3^{i+j}$$

3. Find a closed-form expression equal to the following product. Show your work.

$$\prod_{i=1}^{n} 2^{i^2 + i}$$

4. Find a closed-form expression equal to the following summation. Show your work.

$$\sum_{i=3}^\infty (\frac{-1}{2})^i$$

5. You have seen this so-called "perturbation" method to evaluate a geometric sum:

$$S = 1 + z + z^{2} + \dots + z^{n}$$

$$zS = z + z^{2} + \dots + z^{n} + z^{n+1}$$

$$S - zS = 1 - z^{n+1}$$

$$S = \frac{1 - z^{n+1}}{1 - z}$$

Use the same approach to find a closed-form expression for this sum: $T=z+2z^2+3z^3+\cdots+nz^n$

- 6. Prove that the following relationships hold.
 - (a) $3x^2 + 2x + 1 = O(x^2)$.
 - (b) $\ln x = O(\log_b x)$, where the base b is any positive real number other than 1.
- 7. Prove that if f(x) = O(g(x)), and g(x) = O(h(x)), then f(x) = O(h(x)).
- 8. Show that the following asymptotic relationships hold:
 - (a) $2n + \log n = \Theta(n)$ (b) $n^2 = o(1.01^n)$ (c) $\log n = o(n)$ (d) $2^{n/2} = o(2^n)$
 - (e) $\frac{n^2+2n-3}{n^2-7} \sim 1$
 - (f) $\sum_{i=0}^{n} 2^{2i+1} = \Theta(4^n).$