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Growing Privacy Concerns

“Detailed information on an individual’s credit, health, 
and financial status, on characteristic purchasing 
patterns, and on other personal preferences is routinely 
recorded and analyzed by a variety of governmental and 
commercial organizations.”  

- M. J. Cronin, “e-Privacy?” Hoover Digest, 2000.

 Person specific information is being routinely 
collected. 



Proliferation of Graph Data

http://www.touchgraph.com/



Privacy breaches on graph data

• Identity disclosure
– Identity of individuals associated with nodes is 

disclosed

• Link disclosure
– Relationships between individuals are disclosed

• Content disclosure
– Attribute data associated with a node is disclosed



Identity anonymization on graphs

• Question
– How to share a network in a manner that permits useful analysis 

without disclosing the identity of the individuals involved?

• Observations
– Simply removing the identifying information of the nodes before 

publishing the actual graph does not guarantee identity 
anonymization. 

L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou R3579X?: Anonymized social netwoks, 
hidden patterns, and structural steganography,” In WWW 2007.

J. Kleinberg, “Challenges in Social Network Data: Processes, Privacy and Paradoxes, ” KDD 2007 
Keynote Talk.

• Can we borrow ideas from k-anonymity?



What if you want to prevent the 
following from happening

• Assume that adversary A knows that B has 
327 connections in a social network! 

• If the graph is released by removing the 
identity of the nodes

– A can find all nodes that have degree 327

– If there is only one node with degree 327, A can 
identify this node as being B.



Privacy model

[k-degree anonymity] A graph G(V, E) is k-degree anonymous if 
every node in V has the same degree as k-1 other nodes in V.

[Properties] It prevents the re-identification of individuals by 
adversaries with a priori knowledge of the degree of certain 
nodes. 
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Problem Definition

• Symmetric difference between graphs G(V,E) and G’(V,E’) :

Given a graph G(V, E) and an integer k, modify G via a minimal set of edge 
addition or deletion operations to construct a new graph G’(V’, E’) such that 

1) G’ is k-degree anonymous; 

2) V’ = V;

3) The symmetric difference of G and G’ is as small as possible
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GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k

Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]: 

• Contruct an anonymized degree sequence d’ from the 

original degree sequence d

[Graph Construction]: 

[Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0 is d‘

[Transform]: Transform G0(V, E0) to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 



Degree-sequence anonymization

[k-anonymous sequence] A sequence of integers d is k-anonymous if 
every distinct element value in d appears at least k times.

[degree-sequence anonymization] Given degree sequence d, 
and integer k, construct k-anonymous sequence d’ such that 
||d’-d|| is minimized

[100,100, 100, 98, 98,15,15,15]

Increase/decrease of degrees correspond to additions/deletions of edges



Algorithm for degree-sequence 
anonymization

Original degree sequence

k=2k=4



DP for degree-sequence 
anonymization
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 Dynamic Programming with O(nk)
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 DA(1, n) : the optimal degree-sequence anonymization cost 

 Dynamic Programming with O(n2)

 C(i, j) : anonymization cost when all nodes i, i+1, …, j are put in the same 
anonymized group, i.e., 

 d (1) ≥ d (2) ≥… ≥ d (i) ≥… ≥ d (n) : original degree sequence.

 d’ (1) ≥ d’ (2) ≥…≥ d’ (i) ≥…≥ d’ (n) : k-anonymized degree sequence.

 Dynamic Programming can be done in O(n) with some additional bookkeeping



GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k

Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]: 

• Contruct an anonymized degree sequence d’ from the 

original degree sequence d

[Graph Construction]: 

[Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0 is d‘

[Transform]: Transform G0(V, E0) to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 



Are all degree sequences realizable?

• A degree sequence d is realizable if there 
exists a simple undirected graph with nodes 
having degree sequence d.

• Not all vectors of integers are realizable 
degree sequences
– d = {4,2,2,2,1} ?

• How can we decide?



Realizability of degree sequences

[Erdös and Gallai] A degree sequence d with d(1) ≥ d(2) ≥… ≥ d(i) ≥… ≥ d(n) 
and Σd(i) even, is realizable if and only if 
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Input: Degree sequence d’
Output: Graph G0(V, E0) with degree sequence d’ or NO!

If the degree sequence d’ is NOT realizable?

•Convert it into a realizable and k-anonymous degree sequence



GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k

Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]: 

• Contruct an anonymized degree sequence d’ from the 

original degree sequence d

[Graph Construction]: 

[Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0 is d‘

[Transform]: Transform G0(V, E0) to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 



Graph-transformation algorithm 

 GreedySwap transforms G0 = (V, E0) into G’(V, E’) with the same degree 
sequence d’, and min symmetric difference SymDiff(G’,G) .

 GreedySwap is a greedy heuristic with several iterations.

 At each step, GreedySwap swaps a pair of edges to make the graph more 
similar to the original graph G, while leaving the nodes’ degrees intact.



Valid swappable pairs of edges

A swap is valid if the resulting graph is simple



GreedySwap algorithm

Input: A pliable graph G0(V, E0) , fixed graph G(V,E)

Output: Graph G’(V, E’) with the same degree sequence as G0(V,E0)

i=0

Repeat 

find the valid swap in Gi that most reduces its symmetric difference 

with G , and form graph Gi+1

i++



Experiments

• Datasets: Co-authors, Enron emails, 
powergrid, Erdos-Renyi, small-world and 
power-law graphs

• Goal: degree-anonymization does not destroy 
the structure of the graph
– Average path length

– Clustering coefficient

– Exponent of power-law distribution  



Experiments: Clustering coefficient 
and Avg Path Length

 Co-author dataset

 APL and CC do not change dramatically even for large values of k



Experiments: Edge intersections

Synthetic datasets

Small world graphs* 0.99 (0.01)

Random graphs 0.99 (0.01)

Power law graphs** 0.93 (0.04)

Real datasets

Enron 0.95 (0.16)

Powergrid 0.97 (0.01)

Co-authors 0.91(0.01)

(*) L. Barabasi and R. Albert: Emergence of  scaling in random networks. Science 1999.

(**) Watts, D. J. Networks, dynamics, and the small-world phenomenon. American Journal of Sociology 
1999

Edge intersection achieved 
by the GreedySwap
algorithm for different 
datasets.

Parenthesis value indicates 
the original value of edge 
intersection
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Privacy in transaction data
Voter Registration List Patient Records

02237Female4/19/72Ellen

02174Male2/21/84Dan

90210Female10/1/44Carol

55410Female1/10/81Beth

53715Male1/21/76Andre

ZipcodeSexDOBName

6

5

4

3

2

1

ID

HIV53708Female2/28/86

Flu53708Female2/28/86

Hepatitis53715Female4/13/86

Bronchitis53715Male9/1/86

Broken Arm53703Male1/21/76

Flu53715Male1/21/76

DiseaseZipcodeSexDOB
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Data De-Identification

• Identifiers typically removed

– e.g., Name and Social Security #

• Threat of re-identification by linking public 
data sets using other attributes

– e.g., DOB, Sex, and Zipcode

• Refer to the set of attributes available 
externally as the quasi-identifier

– Assume known based on the domain
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k-Anonymity 

• Intuitive means of protecting identity

• Single published table T

• Generalize / suppress quasi-identifier values so 
no individual uniquely identified from a group 
smaller than k
– Each group of records with identical quasi-identifier 

values is a QI-group

– Table T is k-anonymous if the size of each QI-group is 
at least k.
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Example
Voter Registration List Patient Records

Name DOB Sex Zipcode

Andre 1/21/76 Male 53715

Beth 1/10/81 Female 55410

Carol 10/1/44 Female 90210

Dan 2/21/84 Male 02174

Ellen 4/19/72 Female 02237

ID DOB Sex Zipcode Disease

1 1/21/76 Male 537** Flu

2 1/21/76 Male 537** Broken Arm

3 1986 * 53715 Bronchitis

4 1986 * 53715 Hepatitis

5 2/28/86 Female 53708 Flu

6 2/28/86 Female 53708 HIV



27

Example
Voter Registration List Patient Records

Name DOB Sex Zipcode

Andre 1/21/76 Male 53715

Beth 1/10/81 Female 55410

Carol 10/1/44 Female 90210

Dan 2/21/84 Male 02174

Ellen 4/19/72 Female 02237

ID DOB Sex Zipcode Disease

1 1/21/76 Male 537** Hepatitis

2 1/21/76 Male 537** Hepatitis

3 1986 * 53715 Bronchitis

4 1986 * 53715 Hepatitis

5 2/28/86 Female 53708 Flu

6 2/28/86 Female 53708 HIV
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Competing Goals

• Privacy vs. Utility

• Released data should be as useful as possible, 
while respecting privacy constraints.



29

Key Questions

How should we manipulate published data to 
satisfy k-anonymity? Preserve utility?
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Single-Dimensional Global Recoding

– Each quasi-identifier attribute Xi has some 
domain of unique values (DXi)

–Map each DXi to “generalized” set of values
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Single-Dimensional Global Recoding

• Divide each quasi-identifier domain (individually) 
into ranges

28

27

26

25

537125371153710

[53710-53711][25-28]

[53710-53711][25-28]

53712[25-28]

53712[25-28]

[53710-53711][25-28]

[53710-53711][25-28]

ZipcodeAge
k=2
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Multidimensional Global Recoding

• Flexible Alternative…
– Map DX1 x … x DXn to “generalized” set of vector 

values

– Every single-dimensional recoding can be 
expressed as a multidimensional recoding
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Multidimensional Global Recoding

• Set of non-overlapping hyper-rectangular regions
covering domain space

28

27

26

25

537125371153710 Age Zipcode

[25-26] [53710-53711]

[25-26] [53710-53711]

[27-28] [53710-53711]

[27-28] [53710-53711]

[25-28] 53712

[25-28] 53712

k=2


