Mining Association Rules in Large
Databases

Association rules

* Given a set of transactions D, find rules that will predict the
occurrence of an item (or a set of items) based on the
occurrences of other items in the transaction

Market-Basket transactions

TID Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Ol B W N -

Bread, Milk, Diaper, Coke

Examples of association rules

{Diaper} — {Beer},
{Milk, Bread} — {Diaper,Coke},
{Beer, Bread} — {Milk},

An even simpler concept: frequent
Itemsets

e Given a set of transactions D, find combination of items that

occur frequently

Market-Basket transactions

TID Items

Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

g B WO DN -

Examples of frequent itemsets

{Diaper, Beer},
{Milk, Bread}
{Beer, Bread, Milk},

Lecture outline

* Task 1: Methods for finding all frequent itemsets efficiently

* Task 2: Methods for finding association rules efficiently

Definition: Frequent Itemset

Itemset

— A set of one or more items
* E.g.: {Milk, Bread, Diaper}
— k-itemset
* Anitemset that contains k items
Support count (o)

— Frequency of occurrence of an itemset
(number of transactions it appears)

— E.g. o({Milk, Bread,Diaper}) = 2
Support

— Fraction of the transactions in which an
itemset appears

— E.g. s({Milk, Bread, Diaper}) = 2/5
Frequent Itemset

— An itemset whose support is greater than
or equal to a minsup threshold

TID

Items
Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

gl | W N -

Bread, Milk, Diaper, Coke

Why do we want to find frequent itemsets?

Find all combinations of items that occur together

They might be interesting (e.g., in placement of items in a store

©)

Frequent itemsets are only positive combinations (we do not
report combinations that do not occur frequently together)

Frequent itemsets aims at providing a summary for the data

Finding frequent sets

* Task: Given a transaction database D and a minsup threshold
find all frequent itemsets and the frequency of each set in this
collection

e Stated differently: Count the number of times combinations of
attributes occur in the data. If the count of a combination is
above minsup report it.

* Recall: The input is a transaction database D where every
transaction consists of a subset of items from some universe /

How many itemsets are there?

Given d items, there
are 29 possible
itemsets

When is the task sensible and feasible?

* If minsup =0, then all subsets of I will be frequent and thus the
size of the collection will be very large

* This summary is very large (maybe larger than the original
input) and thus not interesting

* The task of finding all frequent sets is interesting typically only
for relatively large values of minsup

A simple algorithm for finding all frequent

itemsets ?7?

Brute-force algorithm for finding all
frequent itemsets?

e Generate all possible itemsets (lattice of itemsets)

— Start with 1-itemsets, 2-itemsets,...,d-itemsets

 Compute the frequency of each itemset from the data

— Count in how many transactions each itemset occurs

* If the support of an itemset is above minsup report it as a
frequent itemset

Brute-force approach for finding all
frequent itemsets

 Complexity?
— Match every candidate against each transaction

— For M candidates and N transactions, the complexity
is™ O(NMw) => Expensive since M = 29 111

Speeding-up the brute-force algorithm

* Reduce the number of candidates (M)
— Complete search: M=24
— Use pruning techniques to reduce M

* Reduce the number of transactions (N)

— Reduce size of N as the size of itemset increases

— Use vertical-partitioning of the data to apply the mining
algorithms

* Reduce the number of comparisons (NM)

— Use efficient data structures to store the candidates or
transactions

— No need to match every candidate against every transaction

Reduce the number of candidates

* Apriori principle (Main observation):

— If an itemset is frequent, then all of its subsets must also
be frequent

* Apriori principle holds due to the following property
of the support measure:

VXY (X cY)=5s(X)=>s(Y)

— The support of an itemset never exceeds the support of
its subsets

— This is known as the anti-monotone property of support

TID

Example

Items
Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

O | W[N] -

Bread, Milk, Diaper, Coke

s(Bread) > s(Bread, Beer)
s(Milk) > s(Bread, Milk)
s(Diaper, Beer) > s(Diaper, Beer, Coke)

lllustrating the Apriori principle

(]
Q&
oS
Amq
()]
2 =
=

Illustrating the Apriori principle

ltem Count |Items (1-itemsets)
Bread 4
" o
Milk 4 r— Count Pairs (2-itemsets)
Beer 3 .
- Bread,Milk 3
SR e > (No need to generate
JY {Bread Diaper} 3 candidates involving Coke
{Milk,Beer} 2 or Eggs)
{Milk,Diaper} 3
: {Beer,Diaper} 3
minsup = 3/5 _ _
\ Triplets (3-itemsets)
If every subset is considered, ltemset Count
6C1 + 6C2 + sc3 =41 {Bread,Milk,Diaper} 3

With support-based pruning,
6+6+1=13

Exploiting the Apriori principle

.. Find frequent 1-items and put them to L, (k=1)

.. Use L, to generate a collection of candidate
itemsets C,,, with size (k+1)

;. Scan the database to find which itemsets in C,,, are
frequent and put theminto L,

s+ If L., IS not empty
> k=k+1
> Goto step 2

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",
Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

The Apriori algorithm

C,: Candidate itemsets of size k

L, : frequent itemsets of size k

L, = {frequent 1-itemsets};
for (k=2; L, 1=0; k++)
[C..,; = GenerateCandidates(L,)]

for each transaction t in database do
[increment count of candidates in C,,, that are contained in t}

endfor

L,., =candidates in C,,, with support Zmin_sup
endfor
return U, L,;

GenerateCandidates

* Assume the itemsin L, are listed in an order (e.g., alphabetical)

* Step 1: self-joining L, (IN SQL)
insert into C,,;
select p.item,, p.item,, ..., p.item,, q.item,
fromL,.p, L. q

where p.item,=q.item,, ..., p.item,_,=q.item,_,, p.item < q.item,

Example of Candidates Generation

* L,={abc, abd, acd, ace, bcd}

i SEIf'jOining: L3 *L3 {a,c,d} {a,ce}

_ abed from abe and abd N
{a,c,d,e}

— acde from acd and ace
x'/ P’l \¥ \‘A

acd ace ade cde

GenerateCandidates

* Assume the itemsin L, are listed in an order (e.g., alphabetical)

* Step 1: self-joining L, (IN SQL)

insert into C,,;

select p.item,, p.item,, ..., p.item,, q.item,

fromL,.p, L. q

where p.item,=q.item,, ..., p.item,_,=q.item,_,, p.item < q.item,
* Step 2: pruning

forall itemsets c in C,,, do

forall k-subsets s of c do

if (s is not in L,) then delete c from C, ,,

Example of Candidates Generation

* L,={abc, abd, acd, ace, bcd}

* Self-joining: ;%L

{a,c,d} {a,c,e}

_ abed from abc and abd N
{a),d,e}
— acde from acd and ace PV
e P’l \¥ \‘A
* Pruning: acd ace ade cde
vo4 X

— acde is removed because ade is not in L,

* C,~{abcd}

The Apriori algorithm

C,: Candidate itemsets of size k

L, : frequent itemsets of size k

L, = {frequent items};
for (k=1; L, 1=0; k++)
[C..,; = GenerateCandidates(L,)]

for each transaction t in database do
[increment count of candidates in C,,, that are contained in t}

endfor

L,., =candidates in C,,, with support Zmin_sup
endfor
return U, L,;

How to Count Supports of Candidates?

* Naive algorithm?

— Method:
— Candidate itemsets are stored in a hash-tree
— Leaf node of hash-tree contains a list of itemsets and counts
— Interior node contains a hash table

— Subset function: finds all the candidates contained in a transaction

Example of the hash-tree for C,

Hash function: mod 3

1)
AN

1,4,.. 2,5,.. 3,6,.

Hash on 3™ item

]

1%

234

@ ——Hash on 1st jtem

——Hash on 2" jtem

567
345 | | 356 367

689

368

124
457

125
458

159

Example of the hash-tree for C,

L

2345 345
look for 2XX | look for 3XX

Hash function: mod 3 12345

()
AN 12345

1st item

1A 250 3,6 look for 1XX 234 ——Hash on 2" jitem
145 345 | | 356 367
Hash on 3 item 689 368

124 125 159
457 458

Example of the hash-tree for C,

Hash function: mod 3

1)
AN

1,4,.. 2,5,..

3,6,..

12345

12345
look for 1 XX

look for 12X

12345

L

2345
look for 2XX

345

look for 3XX

234

——Hash on 2" jtem

689

567
345 | | 356 367

368

look for 14X

=t
12345—7‘/
124

look for 13X (null)

125
458

12345 /

159

The subset function finds all the candidates contained in a transaction:
e At the root level it hashes on all items in the transaction
* At level i it hashes on all items in the transaction that come after item the i-th item

Discussion of the Apriori algorithm

Much faster than the Brute-force algorithm

— It avoids checking all elements in the lattice

The running time is in the worst case 0(29)

— Pruning really prunes in practice

It makes multiple passes over the dataset

— One pass for every level k

Multiple passes over the dataset is inefficient when we have
thousands of candidates and millions of transactions

Making a single pass over the data: the
AprioriTid algorithm

 The database is not used for counting support after
the 1%t pass!

* Instead information in data structure C,’ is used for
counting support in every step

— C/ ={<TID, {X,}> | X, is a potentially frequent k-itemset in
transaction with id=TID}

— C,’: corresponds to the original database (every item i is
replaced by itemset {i})

— The member C,’ corresponding to transaction t is <t.TID, {c €
C.| cis contained in t}>

The AprioriTID algorithm

* L, ={frequent 1-itemsets}
 C,/ =database D
« for (k=2, L _,'# empty; k++)
C, = GenerateCandidates(L, _,)
Ck’ = {}
for all entrieste C,_,’
C.= {ce CIt[c-c[k]]=1 and t[c-c[k-1]]=1}
for all ce C, {c.count++}
if (C.z {})
append C.to C,’
endif

endfor
L= {ce C, | c.count >= minsup}

endfor

* return Uk L,

AprioriTid Example (minsup=2)

Database D

TID |ltems

10013 4
2001235
30011235
400(2 5

itemset
{12}
{13}
{15 [
{2 3}
{2 5}
{3 5}

itemset——
{2 3 5}

C,’

TID |Sets of itemsets

C,’

TID Sets of itemsets

TID Sets of itemsets

L,

itemset|s

{1}
12}
{3}
{5}

L,

itemset| sup

{1 3}
12 3}
{2 5}
{3 5}

itemset

{2 35}

Discussion on the AprioriTID

algorithm
* L, ={frequent 1-itemsets} * One single pass over the
* C,/=databaseD data

« for (k=2, L ,'# empty; k++)
C, = GenerateCandidates(L,_,)

¢/ =0 . ,
for all entrieste C, ,’ * ck 1S generated from Ck-1

C.= {ce C, | t[c-c[k]]=1 and t[c-c[k-1]]=1}
for all ce C, {c.count++}

if (Cz {}) * Forsmall values of k, C,’
append C,to C/ could be larger than the
endif database!
endfor
L= {ce C, | c.count >= minsup}
endfor * For large values of k, C,” can

* returnU, L, be very small

Apriori vs. AprioriTID

* Apriori makes multiple passes over the data while
AprioriTID makes a single pass over the data

* AprioriTID needs to store additional data structures
that may require more space than Apriori

* Both algorithms need to check all candidates’
frequencies in every step

Implementations

e Lots of them around

* See, for example, the web page of Bart Goethals:
http://www.adrem.ua.ac.be/~goethals/software/

e Typical input format: each row lists the items (using item id's)
that appear in every row

Lecture outline

* Task 1: Methods for finding all frequent itemsets efficiently

e Task 2: Methods for finding association rules efficiently

Definition: Association Rule

Let D be database of transactions

SRR - cion 0 | eems

2000 A B,C
1000 A C
4000 A D
5000 B,E F

* Let/be the set of items that appear in the
database, e.g., I={A,B,C,D,E,F}

* Aruleis defined by X =2 Y, where XclI, Y,
and XNY=Y

—e.g.: {B,C} 2 {A}is arule

Definition: Association Rule

Association Rule

m An implication expression of the
form X - Y, where X and Y are
non-overlapping itemsets

m Example:
{Milk, Diaper} — {Beer}

Rule Evaluation Metrics
= Support (s)

o Fraction of transactions that
contain both X and Y

m Confidence (c)

o Measures how often itemsin Y
appear in transactions that
contain X

o o (Milk, Diaper,Beer) 2

co o (Milk, Diaper, Beer) 2

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke
Example:

{Milk, Diaper} — Beer

0.4
| T] >

: : —=0.67
o (Milk, Diaper) 3

Rule Measures: Support and

Confidence
Cust : : .
bﬁzsor::; customer | Find all the rules X = Y with minimum
uys diaper confidence and support
— support, s, probability that a transaction
contains {X U Y}
— confidence, ¢, conditional probability
that a transaction having X also contains Y
Customer
buys beer
TID ltems | Let minin_vL_/m support_ 50%,
100 AB,C and minimum confidence
200 A,C 50%, we have
300 AD m A>C (50%, 66.6%)

400 BEF s C> A (50%, 100%)

Example

TID date items bought
100 10/10/99 {F,A,D,B}

200 15/10/99 {D,A,C,E,B}

300 19/10/99 {C,A,B,E}

400 20/10/99 {B,A,D}

What is the support and confidence of the rule: {B,D} = {A}

Support:
» percentage of tuples that contain {A,B,D} = 75%

Confidence:
number of tuples that contain {A, B, D}

— 0
number of tuples that contain {B, D} 1007

Association-rule mining task

* Given a set of transactions D, the goal of
association rule mining is to find all rules having

— support = minsup threshold
— confidence = minconf threshold

Brute-force algorithm for
association-rule mining

* List all possible association rules

 Compute the support and confidence for each
rule

* Prune rules that fail the minsup and minconf
thresholds

* = Computationally prohibitive!

Number of rules

[n]

m
T

1=
T

L
T

[y
T

-
T

]

w107

Computational Complexity
* Given d unique items in I

— Total number of itemsets = 2¢

— Total number of possible association rules:

[

J(dY .
X
=1 k j=1

|

d—k
J

J

Mining Association Rules

TID Items
Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

gl b~ W[N] -

Bread, Milk, Diaper, Coke

Observations:

Example of Rules:

{Milk,Diaper} — {Beer} (s=0.4, c=0.67)
{Milk,Beer} — {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} — {Milk} (s=0.4, c=0.67)
{Beer} — {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} —» {Milk,Beer} (s=0.4, c=0.5)
{Milk} — {Diaper,Beer} (s=0.4, c=0.5)

* All the above rules are binary partitions of the same itemset:

{Milk, Diaper, Beer}

* Rules originating from the same itemset have identical support but

can have different confidence

* Thus, we may decouple the support and confidence requirements

Mining Association Rules

* Two-step approach:

— Frequent Itemset Generation
— Generate all itemsets whose support > minsup

— Rule Generation

— Generate high confidence rules from each frequent
itemset, where each rule is a binary partition of a frequent
itemset

Rule Generation — Naive algorithm

* Given a frequent itemset X, find all non-empty
subsets yc X such that y— X —y satisfies the
minimum confidence requirement

— If {A,B,C,D} is a frequent itemset, candidate rules:

ABC —D, ABD —C, ACD —B, BCD —A,
A —BCD, B —>ACD, C —>ABD, D —ABC
AB —CD, AC — BD, AD — BC, BC —>AD,
BD -AC, CD —AB,

 If | X] =k, then there are 2k -2 candidate
association rules (ignoring L > @ and @ — L)

Efficient rule generation

* How to efficiently generate rules from frequent
itemsets?

— In general, confidence does not have an anti-monotone
property

c¢(ABC —D) can be larger or smaller than ¢(AB —D)

— But confidence of rules generated from the same itemset
has an anti-monotone property

— Example: X ={A,B,C,D}:
c(ABC —» D) > c(AB — CD) > c(A — BCD)
— Why?

Confidence is anti-monotone w.r.t. number of items on
the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

ABCD=>{}
Low

Confide&’
Rule ;

Apriori algorithm for rule generation

* Candidate rule is generated by merging two rules
that share the same prefix
in the rule consequent

* join(CD—>AB,BD—>AC()
would produce the candidate
rule D 2>ABC

* Prune rule D2>ABC if there exists a
subset (e.g., AD—>BC) that does not have
high confidence

