
Mining Association Rules in Large 
Databases



Association rules 

• Given a set of transactions D, find rules that will predict the 
occurrence of an item (or a set of items) based on the 
occurrences of other items in the transaction

Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of association rules

{Diaper} {Beer},

{Milk, Bread} {Diaper,Coke},

{Beer, Bread} {Milk},



An even simpler concept: frequent 
itemsets

• Given a set of transactions D, find combination of items that 
occur frequently

Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of frequent itemsets

{Diaper, Beer},

{Milk, Bread} 

{Beer, Bread, Milk},



Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently 

• Task 2: Methods for finding association rules efficiently



Definition: Frequent Itemset
• Itemset

– A set of one or more items

• E.g.: {Milk, Bread, Diaper}

– k-itemset

• An itemset that contains k items

• Support count ( )

– Frequency of occurrence of an itemset
(number of transactions it appears)

– E.g.   ({Milk, Bread,Diaper}) = 2 

• Support

– Fraction of the transactions in which an 
itemset appears

– E.g.   s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

– An itemset whose support is greater than 
or equal to a minsup threshold

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Why do we want to find frequent itemsets?

• Find all combinations of items that occur together

• They might be interesting (e.g., in placement of items in a store 
)

• Frequent itemsets are only positive combinations (we do not 
report combinations that do not occur frequently together)

• Frequent itemsets aims at providing a summary for the data



Finding frequent sets

• Task: Given a transaction database D and a minsup threshold 
find all frequent itemsets and the frequency of each set in this 
collection

• Stated differently: Count the number of times combinations of 
attributes occur in the data. If the count of a combination is 
above minsup report it.

• Recall: The input is a transaction database D where every 
transaction consists of a subset of items from some universe I



How many itemsets are there? 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there 

are 2d possible  

itemsets



When is the task sensible and feasible?

• If minsup = 0, then all subsets of I will be frequent and thus the 
size of the collection will be very large

• This summary is very large (maybe larger than the original 
input) and thus not interesting

• The task of finding all frequent sets is interesting typically only 
for relatively large values of minsup



A simple algorithm for finding all frequent 
itemsets ??

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE



Brute-force algorithm for finding all 
frequent itemsets?

• Generate all possible itemsets (lattice of itemsets)

– Start with 1-itemsets, 2-itemsets,...,d-itemsets

• Compute the frequency of each itemset from the data

– Count in how many transactions each itemset occurs

• If the support of an itemset is above minsup report it as a 
frequent itemset



Brute-force approach for finding all 
frequent itemsets

• Complexity?

– Match every candidate against each transaction 

– For M candidates and N transactions, the complexity  
is~ O(NMw) => Expensive since M = 2d !!!



Speeding-up the brute-force algorithm

• Reduce the number of candidates (M)
– Complete search: M=2d

– Use pruning techniques to reduce M

• Reduce the number of transactions (N)
– Reduce size of N as the size of itemset increases

– Use vertical-partitioning of the data to apply the mining 
algorithms

• Reduce the number of comparisons (NM)
– Use efficient data structures to store the candidates or 

transactions

– No need to match every candidate against every transaction



Reduce the number of candidates

• Apriori principle (Main observation):
– If an itemset is frequent, then all of its subsets must also 

be frequent

• Apriori principle holds due to the following property 
of the support measure:

– The support of an itemset never exceeds the support of 
its subsets

– This is known as the anti-monotone property of support

)()()(:, YsXsYXYX



Example

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

s(Bread) >  s(Bread, Beer)
s(Milk) > s(Bread, Milk)
s(Diaper, Beer) > s(Diaper, Beer, Coke)



Found to be 

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating the Apriori principle

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 

supersets



Illustrating the Apriori principle

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 

{Bread,Milk,Diaper} 3 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
minsup = 3/5

If every subset is considered, 
6C1 + 6C2 + 6C3 = 41
With support-based pruning,
6 + 6 + 1 = 13



Exploiting the Apriori principle

1. Find frequent 1-items and put them to Lk (k=1)

2. Use Lk to generate a collection of candidate 
itemsets Ck+1 with size (k+1)

3. Scan the database to find which itemsets in Ck+1 are 
frequent and put them into Lk+1

4. If Lk+1 is not empty

 k=k+1

 Goto step 2

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", 
Proc. of the 20th Int'l Conference on Very Large Databases, 1994. 



The Apriori algorithm
Ck: Candidate itemsets of size k

Lk : frequent itemsets of size k

L1 = {frequent 1-itemsets};

for (k = 2; Lk != ; k++) 

Ck+1 = GenerateCandidates(Lk)

for each transaction t in database do 

increment count of candidates in Ck+1 that are contained in t

endfor

Lk+1 = candidates in Ck+1 with support ≥min_sup

endfor

return k Lk;



GenerateCandidates

• Assume the items in Lk are listed in an order (e.g., alphabetical)

• Step 1: self-joining Lk (IN SQL)

insert into Ck+1

select p.item1, p.item2, …, p.itemk, q.itemk

from Lk p, Lk q

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk



Example of Candidates Generation

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde



GenerateCandidates

• Assume the items in Lk are listed in an order (e.g., alphabetical)

• Step 1: self-joining Lk (IN SQL)

insert into Ck+1

select p.item1, p.item2, …, p.itemk, q.itemk

from Lk p, Lk q

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk

• Step 2: pruning

forall itemsets c in Ck+1 do

forall k-subsets s of c do

if (s is not in Lk) then delete c from Ck+1



Example of Candidates Generation

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

• Pruning:

– acde is removed because ade is not in L3

• C4={abcd}

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde
X

X



The Apriori algorithm
Ck: Candidate itemsets of size k

Lk : frequent itemsets of size k

L1 = {frequent items};

for (k = 1; Lk != ; k++) 

Ck+1 = GenerateCandidates(Lk)

for each transaction t in database do 

increment count of candidates in Ck+1 that are contained in t

endfor

Lk+1 = candidates in Ck+1 with support ≥min_sup

endfor

return k Lk;



How to Count Supports of Candidates?

• Naive algorithm?

– Method:

– Candidate itemsets are stored in a hash-tree

– Leaf node of hash-tree contains a list of itemsets and counts

– Interior node contains a hash table

– Subset function: finds all the candidates contained in a transaction



Example of the hash-tree for C3

Hash function: mod 3

H

1,4,.. 2,5,.. 3,6,..

H Hash on 1st item

H H234
567

H145

124
457

125
458

159

345 356
689

367
368

Hash on 2nd item

Hash on 3rd item



Example of the hash-tree for C3

Hash function: mod 3

H

1,4,.. 2,5,.. 3,6,..

H Hash on 1st item

H H234
567

H145

124
457

125
458

159

345 356
689

367
368

Hash on 2nd item

Hash on 3rd item

12345

12345
look for 1XX

2345
look for 2XX

345
look for 3XX



Example of the hash-tree for C3

Hash function: mod 3

H

1,4,.. 2,5,.. 3,6,..

H Hash on 1st item

H H234
567

H145

124
457

125
458

159

345 356
689

367
368

Hash on 2nd item

12345

12345
look for 1XX

2345
look for 2XX

345
look for 3XX

12345
look for 12X

12345
look for 13X (null)

12345
look for 14X

The subset function finds all the candidates contained in a transaction:
• At the root level it hashes on all items in the transaction
• At level i it hashes on all items in the transaction that come after item the i-th item



Discussion of the Apriori algorithm

• Much faster than the Brute-force algorithm

– It avoids checking all elements in the lattice

• The running time is in the worst case O(2d)

– Pruning really prunes in practice

• It makes multiple passes over the dataset

– One pass for every level k

• Multiple passes over the dataset is inefficient when we have 
thousands of candidates and millions of transactions



Making a single pass over the data: the 
AprioriTid algorithm

• The database is not used  for counting support after 
the 1st pass!

• Instead information in data structure Ck’ is used for 
counting support in every step

– Ck’ = {<TID, {Xk}> | Xk is a potentially frequent k-itemset in 
transaction with id=TID}

– C1’: corresponds to the original database (every item i is 
replaced by itemset {i})

– The member Ck’ corresponding to transaction t is <t.TID, {c є 
Ck| c is contained in t}> 



The AprioriTID algorithm

• L1 = {frequent 1-itemsets}

• C1’ = database D

• for (k=2, Lk-1’≠ empty; k++)

Ck = GenerateCandidates(Lk-1)

Ck’ = {}

for all entries t є Ck-1’

Ct= {cє Ck|t[c-c[k]]=1 and t[c-c[k-1]]=1}

for all cє Ct {c.count++}

if (Ct≠ {}) 

append Ct to  Ck’ 

endif

endfor

Lk= {cє Ck|c.count >= minsup}

endfor

• return Uk Lk



AprioriTid Example (minsup=2)

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D
itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2

C3’
itemset

{2 3 5}

itemset sup

{2 3 5} 2

TID Sets of itemsets
100 {{1},{3},{4}}

200 {{2},{3},{5}}

300 {{1},{2},{3},{5}}

400 {{2},{5}}

C1’

TID Sets of itemsets
100 {{1 3}}

200 {{2 3},{2 5},{3 5}}

300 {{1 2},{1 3},{1 5},   {2 
3},{2 5},{3 5}}

400 {{2 5}}

C2’

C3

TID Sets of itemsets
200 {{2 3 5}}

300 {{2 3 5}}

L3



Discussion on the AprioriTID
algorithm

• L1 = {frequent 1-itemsets}

• C1’ = database D

• for (k=2, Lk-1’≠ empty; k++)

Ck = GenerateCandidates(Lk-1)

Ck’ = {}

for all entries t є Ck-1’

Ct= {cє Ck|t[c-c[k]]=1 and t[c-c[k-1]]=1}

for all cє Ct {c.count++}

if (Ct≠ {}) 

append Ct to  Ck’ 

endif

endfor

Lk= {cє Ck|c.count >= minsup}

endfor

• return Uk Lk

• One single pass over the 
data

• Ck’ is generated from Ck-1’

• For small values of k, Ck’
could be larger than the 
database!

• For large values of k, Ck’ can 
be very small



Apriori vs. AprioriTID

• Apriori makes multiple passes over the data while 
AprioriTID makes a single pass over the data

• AprioriTID needs to store additional data structures 
that may require more space than Apriori

• Both algorithms need to check all candidates’ 
frequencies in every step



Implementations

• Lots of them around

• See, for example, the web page of Bart Goethals: 
http://www.adrem.ua.ac.be/~goethals/software/

• Typical input format: each row lists the items (using item id's) 
that appear in every row



Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently 

• Task 2: Methods for finding association rules efficiently



Definition: Association Rule

Let D be database of transactions
– e.g.:

• Let I be the set of items that appear in the 
database, e.g., I={A,B,C,D,E,F}

• A rule is defined by X  Y, where X I, Y I, 
and X Y=
– e.g.: {B,C}  {A} is a rule

Transaction ID Items

2000 A, B, C

1000 A, C

4000 A, D

5000 B, E, F



Definition: Association Rule

Example:

Beer}Diaper,Milk{

4.0
5

2

|T|

)BeerDiaper,,Milk(
s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(
c

 Association Rule

 An implication expression of the 
form X Y, where X and Y are 
non-overlapping itemsets

 Example:
{Milk, Diaper} {Beer} 

 Rule Evaluation Metrics

 Support (s)

 Fraction of transactions that 
contain both X and Y

 Confidence (c)

 Measures how often items in Y
appear in transactions that
contain X

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Rule Measures: Support and 
Confidence

Find all the rules X  Y with minimum 
confidence and support
– support, s, probability that a transaction 

contains {X Y}

– confidence, c, conditional probability 

that a transaction having X also contains Y

Let minimum support 50%, 
and minimum confidence 
50%, we have
 A  C  (50%, 66.6%)

 C  A  (50%, 100%)

Customer

buys diaper

Customer

buys both

Customer

buys beer

TID Items

100 A,B,C

200 A,C

300 A,D

400 B,E,F



TID date items_bought
100 10/10/99 {F,A,D,B}

200 15/10/99 {D,A,C,E,B}

300 19/10/99 {C,A,B,E}

400 20/10/99 {B,A,D}

Example

What is the support and confidence of the rule: {B,D}  {A}

 Support:

 percentage of tuples that contain {A,B,D} =

 Confidence:

D}{B,contain  that  tuplesofnumber 

D}B,{A,contain  that  tuplesofnumber 

75%

100%



Association-rule mining task

• Given a set of transactions D, the goal of 
association rule mining is to find all rules having 

– support ≥ minsup threshold

– confidence ≥ minconf threshold



Brute-force algorithm for 
association-rule mining 

• List all possible association rules

• Compute the support and confidence for each 
rule

• Prune rules that fail the minsup and minconf
thresholds

• Computationally prohibitive!



Computational Complexity
• Given d unique items in I:

– Total number of itemsets = 2d

– Total number of possible association rules: 

123 1

1

1 1

dd

d

k

kd

j j

kd

k

d
R

If d=6,  R = 602 rules



Mining Association Rules

Example of Rules:

{Milk,Diaper} {Beer} (s=0.4, c=0.67)

{Milk,Beer} {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} {Milk} (s=0.4, c=0.67)

{Beer} {Milk,Diaper} (s=0.4, c=0.67) 

{Diaper} {Milk,Beer} (s=0.4, c=0.5) 

{Milk} {Diaper,Beer} (s=0.4, c=0.5)

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Observations:
• All the above rules are binary partitions of the same itemset: 

{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but

can have different confidence

• Thus, we may decouple the support and confidence requirements



Mining Association Rules

• Two-step approach: 
– Frequent Itemset Generation

– Generate all itemsets whose support minsup

– Rule Generation
– Generate high confidence rules from each frequent 

itemset, where each rule is a binary partition of a frequent 
itemset



Rule Generation – Naive algorithm

• Given a frequent itemset X, find all non-empty 
subsets y X such that y X – y satisfies the 
minimum confidence requirement

– If {A,B,C,D} is a frequent itemset, candidate rules:
ABC D, ABD C, ACD B, BCD A, 
A BCD, B ACD, C ABD, D ABC
AB CD, AC BD, AD BC, BC AD, 
BD AC, CD AB,

• If |X| = k, then there are 2k – 2 candidate 
association rules (ignoring L and L)



Efficient rule generation

• How to efficiently generate rules from frequent 
itemsets?
– In general, confidence does not have an anti-monotone 

property
c(ABC D) can be larger or smaller than c(AB D)

– But confidence of rules generated from the same itemset
has an anti-monotone property

– Example: X = {A,B,C,D}:

c(ABC D) c(AB CD) c(A BCD)
– Why?

Confidence is anti-monotone w.r.t. number of items on 
the RHS of the rule



Rule Generation for Apriori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules

Low 

Confidence 

Rule



Apriori algorithm for rule generation

• Candidate rule is generated by merging two rules 
that share the same prefix
in the rule consequent

• join(CDAB,BD—>AC)
would produce the candidate
rule D ABC

• Prune rule DABC if there exists a
subset (e.g., ADBC) that does not have
high confidence

CDAB BDAC

DABC


