Lecture outline

- Nearest-neighbor search in low dimensions
- kd-trees
- Nearest-neighbor search in high dimensions
- LSH
- Applications to data mining

Definition

- Given: a set X of n points in R^{d}
- Nearest neighbor: for any query point $q \in R^{d}$ return the point $x \in X$ minimizing $D(x, q)$
- Intuition: Find the point in X that is the closest to q

Motivation

- Learning: Nearest neighbor rule
- Databases: Retrieval
- Data mining: Clustering
- Donald Knuth in vol. 3 of The Art of Computer Programming called it the post-office problem, referring to the application of assigning a resident to the nearest-post office

Nearest-neighbor rule

MNIST dataset "2"

Methods for computing NN

- Linear scan: O(nd) time
- This is pretty much all what is known for exact algorithms with theoretical guarantees
- In practice:
- $\boldsymbol{k} d$-trees work "well" in "low-medium" dimensions

2-dimensional kd-trees

- A data structure to support range queries in R^{2}
- Not the most efficient solution in theory
- Everyone uses it in practice
- Preprocessing time: O(nlogn)
- Space complexity: O(n)
- Query time: $O\left(n^{1 / 2}+k\right)$

2-dimensional kd-trees

- Algorithm:
- Choose x or y coordinate (alternate)
- Choose the median of the coordinate; this defines a horizontal or vertical line
- Recurse on both sides
- We get a binary tree:
- Size O(n)
- Depth O(logn)
- Construction time O(nlogn)

Construction of kd-trees

The complete kd-tree

Region of node \mathbf{v}

Region(v) : the subtree rooted at v stores the points in black dots

Searching in kd-trees

- Range-searching in 2-d
- Given a set of n points, build a data structure that for any query rectangle \mathbf{R} reports all point in \mathbf{R}

kd-tree: range queries

- Recursive procedure starting from $\mathbf{v}=$ root
- Search (v,R)
- If v is a leaf, then report the point stored in v if it lies in R
- Otherwise, if $\operatorname{Reg}(v)$ is contained in R, report all points in the subtree(v)
- Otherwise:
- If Reg(left(v)) intersects R, then Search(left(v),R)
- If Reg(right(v)) intersects R, then Search(right(v),R)

Query time analysis

- We will show that Search takes at most $O\left(n^{1 / 2}+P\right)$ time, where P is the number of reported points
- The total time needed to report all points in all sub-trees is $O(P)$
- We just need to bound the number of nodes v such that region(v) intersects R but is not contained in R (i.e., boundary
 of R intersects the boundary of region(v))
- gross overestimation: bound the number of region(v) which are crossed by any of the 4 horizontal/vertical lines

ouerytime (cont'd)

- $\mathrm{Q}(\mathrm{n})$: max number of regions in an n-point kd-tree intersecting a (say, vertical) line?

- If ℓ intersects region(v) (due to vertical line splitting), then after two levels it intersects 2 regions (due to 2 vertical splitting lines)
- The number of regions intersecting ℓ is $Q(n)=2+2 Q(n / 4) \rightarrow$ $Q(n)=\left(n^{1 / 2}\right)$

d-dimensional kd-trees

- A data structure to support range queries in R^{d}
- Preprocessing time: O(nlogn)
- Space complexity: O(n)
- Query time: O($\left.\mathrm{n}^{1-1 / \mathrm{d}}+\mathrm{k}\right)$

Construction of the d-dimensional kd-trees

- The construction algorithm is similar as in 2-d
- At the root we split the set of points into two subsets of same size by a hyperplane vertical to x_{1}-axis
- At the children of the root, the partition is based on the second coordinate: x_{2}-coordinate
- At depth d, we start all over again by partitioning on the first coordinate
- The recursion stops until there is only one point left, which is stored as a leaf

Locality-sensitive hashing (LSH)

- Idea: Construct hash functions $h: \mathbf{R}^{\mathrm{d}} \rightarrow \mathrm{U}$ such that for any pair of points p, q :
- If $D(p, q) \leq r$, then $\operatorname{Pr}[h(p)=h(q)]$ is high
- If $D(p, q) \geq c r$, then $\operatorname{Pr}[h(p)=h(q)]$ is small
- Then, we can solve the "approximate NN" problem by hashing
- LSH is a general framework; for a given D we need to find the right h

Approximate Nearest Neighbor

- Given a set of points \mathbf{X} in \mathbf{R}^{d} and query point $q \in R^{d}$ c-Approximate r-Nearest Neighbor search returns:
- Returns $p \in P, D(p, q) \leq r$
- Returns NO if there is no $p^{\prime} \in X, D\left(p^{\prime}, q\right) \leq c r$

Locality-Sensitive Hashing (LSH)

- A family H of functions $h: R^{d} \rightarrow \mathrm{U}$ is called ($P_{1}, P_{2}, r, c r$)-sensitive if for any p, q :
- if $D(p, q) \leq r$, then $\operatorname{Pr}[h(p)=h(q)] \geq P 1$
- If $D(p, q) \geq c r$, then $\operatorname{Pr}[h(p)=h(q)] \leq P 2$
- P 1 > P2
- Example: Hamming distance
- LSH functions: $h(p)=p_{i}$, i.e., the i-th bit of p
- Probabilities: $\operatorname{Pr}[h(p)=h(q)]=1-D(p, q) / d$

Algorithm -- preprocessing

- $g(p)=<h_{1}(p), h_{2}(p), \ldots, h_{k}(p)>$
- Preprocessing
- Select $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{L}}$
- For all $p \in X$ hash p to buckets $g_{1}(p), \ldots, g_{L}(p)$
- Since the number of possible buckets might be large we only maintain the non empty ones
- Running time?

Algorithm -- query

- Query q:
- Retrieve the points from buckets $g_{1}(q), g_{2}(q), \ldots, g_{L}(q)$ and let points retrieved be x_{1}, \ldots, x_{L}
- If $D\left(x_{i}, q\right) \leq r$ report it
- Otherwise report that there does not exist such a NN
- Answer the query based on the retrieved points
- Time O(dL)

Applications of LSH in data mining

- Numerous....

Applications

- Find pages with similar sets of words (for clustering or classification)
- Find users in Netflix data that watch similar movies
- Find movies with similar sets of users
- Find images of related things

How would you do it?

- Finding very similar items might be computationally demanding task
- We can relax our requirement to finding somewhat similar items

Running example: comparing documents

- Documents have common text, but no common topic
- Easy special cases:
- Identical documents
- Fully contained documents (letter by letter)
- General case:
- Many small pieces of one document appear out of order in another. What do we do then?

Finding similar documents

- Given a collection of documents, find pairs of documents that have lots of text in common
- Identify mirror sites or web pages
- Plagiarism
- Similar news articles

Key steps

- Shingling: convert documents (news articles, emails, etc) to sets
- LSH: convert large sets to small signatures, while preserving the similarity
- Compare the signatures instead of the actual documents

Shingles

- A k-shingle (or k-gram) is a sequence of k characters that appears in a document
- If doc = abcab and k=3, then 2-singles: $\{a b, b c$, ca\}
- Represent a document by a set of k-shingles

Assumption

- Documents that have similar sets of k-shingles are similar: same text appears in the two documents; the position of the text does not matter
- What should be the value of k ?
- What would large or small k mean?

Data model: sets

- Data points are represented as sets (i.e., sets of shingles)
- Similar data points have large intersections in their sets
- Think of documents and shingles
- Customers and products
- Users and movies

Similarity measures for sets

- Now we have a set representation of the data
- Jaccard coefficient
- A, B sets (subsets of some, large, universe U)

$$
\operatorname{sim}(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Find similar objects using the Jaccard similarity

- Naïve method?
- Problems with the naïve method?
- There are too many objects
- Each object consists of too many sets

Speedingup the naïve method

- Represent every object by a signature (summary of the object)
- Examine pairs of signatures rather than pairs of objects
- Find all similar pairs of signatures
- Check point: check that objects with similar signatures are actually similar

Still problems

- Comparing large number of signatures with each other may take too much time (although it takes less space)
- The method can produce pairs of objects that might not be similar (false positives). The check point needs to be enforced

Creating signatures

- For object x, signature of $x(\operatorname{sign}(x))$ is much smaller (in space) than x
- For objects x, y it should hold that $\operatorname{sim}(x, y)$ is almost the same as sim(sing(x),sign(y))

Intuition behind Jaccard similarity

- Consider two objects: $\mathbf{x , y}$

	\mathbf{x}	\mathbf{y}
a	1	1
b	1	0
c	0	1
d	0	0

- a: \# of rows of form same as a
- $\operatorname{sim}(x, y)=a /(a+b+c)$

A type of signatures -- minhashes

- Randomly permute the rows
- $h(x):$ first row (in permuted data) in which column x has an 1

	x	y
a	1	1
b	1	0
c	0	1
d	0	0

- Use several (e.g., 100) independent hash functions to design a signature

	x	y
a	0	1
b	0	0
c	1	1
d	1	0

"Surprising" property

- The probability (over all permutations of rows) that $h(x)=h(y)$ is the same as $\operatorname{sim}(x, y)$
- Both of them are $a /(a+b+c)$
- So?
- The similarity of signatures is the fraction of the hash functions on which they agree

Minhash algorithm

- Pick k (e.g., 100) permutations of the rows
- Think of $\operatorname{sign}(x)$ as a new vector
- Let $\operatorname{sign}(x)[i]$: in the i-th permutation, the index of the first row that has 1 for object x

Example of minhash signatures

- Input matrix

	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{X 4}$
$\mathbf{1}$	1	0	1	0
$\mathbf{2}$	1	0	0	1
$\mathbf{3}$	0	1	0	1
$\mathbf{4}$	0	1	0	1
$\mathbf{5}$	0	1	0	1
$\mathbf{6}$	$\mathbf{1}$	0	1	0
$\mathbf{7}$	$\mathbf{1}$	0	1	0

Example of minhash signatures

- Input matrix

	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{X 4}$
$\mathbf{1}$	1	0	1	0
$\mathbf{2}$	1	0	0	1
$\mathbf{3}$	0	1	0	1
$\mathbf{4}$	0	1	0	1
$\mathbf{5}$	0	1	0	1
$\mathbf{6}$	$\mathbf{1}$	0	1	0
$\mathbf{7}$	$\mathbf{1}$	0	1	0

Example of minhash signatures

- Input matrix

	$\mathbf{x 1}$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{X 4}$
$\mathbf{1}$	1	0	1	0
$\mathbf{2}$	1	0	0	1
$\mathbf{3}$	0	1	0	1
$\mathbf{4}$	0	1	0	1
$\mathbf{5}$	0	1	0	1
$\mathbf{6}$	$\mathbf{1}$	0	1	0
$\mathbf{7}$	$\mathbf{1}$	0	1	0

Example of minhash signatures

- Input matrix

	actual	signs
$(x 1, x 2)$	0	0
$(x 1, x 3)$	0.75	$2 / 3$
$(x 1, x 4)$	$1 / 7$	0
$(x 2, x 3)$	0	0
$(x 2, x 4)$	0.75	1
$(x 3, x 4)$	0	0

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1...billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?
- $:$

Being more practical

- Approximating row permutations: pick k=100 (?) hash functions ($\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{k}}$)
for each row r
for each column c if c has 1 in row r for each hash fur if $h_{i}(r)$ is a smalle
$\mathrm{M}(\mathrm{i}, \mathrm{c})$ will become the
smallest value of
$\mathrm{h}_{\mathrm{i}}(\mathrm{r})$ for which
column chas $\mathbf{1}$ in
row r ; i.e., $\mathrm{h}_{\mathrm{i}}(\mathrm{r})$ gives
order of rows for i -th permutation.

$$
M(i, c)=h_{i}(r) ;
$$

Example of minhash signatures

- Input matrix

	\mathbf{x}	x 2
$\mathbf{1}$	1	0
$\mathbf{2}$	0	1
$\mathbf{3}$	1	1
$\mathbf{4}$	1	0
$\mathbf{5}$	0	1

	x 1	x 2
$\mathbf{1}$	0	1
2	2	0

$$
\begin{aligned}
& h(r)=r+1 \bmod 5 \\
& g(r)=2 r+1 \bmod 5
\end{aligned}
$$

