
Lecture outline

• Nearest-neighbor search in low dimensions

– kd-trees

• Nearest-neighbor search in high dimensions

– LSH

• Applications to data mining



Definition

• Given: a set X of n points in Rd

• Nearest neighbor: for any query point qєRd

return the point xєX minimizing D(x,q)

• Intuition: Find the point in X that is the closest
to q



Motivation

• Learning: Nearest neighbor rule

• Databases: Retrieval

• Data mining: Clustering

• Donald Knuth in vol.3 of The Art of Computer 
Programming called it the post-office 
problem, referring to the application of 
assigning a resident to the nearest-post office



Nearest-neighbor rule



MNIST dataset “2”



Methods for computing NN 

• Linear scan: O(nd) time

• This is pretty much all what is known for exact 
algorithms with theoretical guarantees

• In practice:

– kd-trees work “well” in “low-medium” dimensions



2-dimensional kd-trees

• A data structure to support range queries in 
R2

– Not the most efficient solution in theory

– Everyone uses it in practice

• Preprocessing time: O(nlogn)

• Space complexity: O(n)

• Query time: O(n1/2+k)



2-dimensional kd-trees

• Algorithm:

– Choose x or y coordinate (alternate)

– Choose the median of the coordinate; this defines a 
horizontal or vertical line

– Recurse on both sides

• We get a binary tree:

– Size O(n)

– Depth O(logn)

– Construction time O(nlogn)



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



The complete kd-tree



Region of node v

Region(v) : the subtree rooted at v stores the points in 
black dots



Searching in kd-trees

• Range-searching in 2-d

– Given a set of n points, build a data structure that 
for any query rectangle R reports all point in R



kd-tree: range queries

• Recursive procedure starting from v = root

• Search (v,R)

– If v is a leaf, then report the point stored in v if it 
lies in R

– Otherwise, if Reg(v) is contained in R, report all 
points in the subtree(v)

– Otherwise:

• If Reg(left(v)) intersects R, then Search(left(v),R)

• If Reg(right(v)) intersects R, then Search(right(v),R)



Query time analysis

• We will show that Search takes at most 
O(n1/2+P) time, where P is the number 
of reported points

– The total time needed to report all 
points in all sub-trees is O(P)

– We just need to bound the number of 
nodes v such that region(v) intersects R
but is not contained in R (i.e., boundary 
of R intersects the boundary of 
region(v))

– gross overestimation: bound the 
number of region(v) which are crossed 
by any of the 4 horizontal/vertical lines



Query time (Cont’d)

• Q(n): max number of regions in an n-point kd-tree intersecting a 
(say, vertical) line?

• If  ℓ intersects region(v) (due to vertical line splitting), then after 
two  levels it intersects 2 regions (due to 2 vertical splitting lines)

• The number of regions intersecting ℓ is Q(n)=2+2Q(n/4) 
Q(n)=(n1/2)



d-dimensional kd-trees

• A data structure to support range queries in Rd

• Preprocessing time: O(nlogn)

• Space complexity: O(n)

• Query time: O(n1-1/d+k)



Construction of the d-dimensional 
kd-trees

• The construction algorithm is similar as in 2-d

• At the root we split the set of points into two subsets 
of same size by a hyperplane vertical to x1-axis

• At the children of the root, the partition is based on 
the second coordinate: x2-coordinate

• At depth d, we start all over again by partitioning on 
the first coordinate

• The recursion stops until there is only one point left, 
which is stored as a leaf



Locality-sensitive hashing (LSH)

• Idea: Construct hash functions h: Rd
 U such 

that for any pair of points p,q:

– If D(p,q)≤r, then Pr[h(p)=h(q)] is high

– If D(p,q)≥cr, then Pr[h(p)=h(q)] is small

• Then, we can solve the “approximate NN” 
problem by hashing

• LSH is a general framework; for a given D we 
need to find the right h



Approximate Nearest Neighbor

• Given a set of points X in Rd and query point 
qєRd c-Approximate r-Nearest Neighbor 
search returns: 

– Returns  p∈P, D(p,q) ≤ r

– Returns NO if there is no p’∈X, D(p’,q) ≤ cr



Locality-Sensitive Hashing (LSH)

• A family H of functions h: Rd
U is called 

(P1,P2,r,cr)-sensitive if for any p,q:

– if D(p,q)≤r, then Pr*h(p)=h(q)+ ≥ P1

– If D(p,q)≥ cr, then Pr*h(p)=h(q)+ ≤ P2

• P1 > P2

• Example: Hamming distance

– LSH functions: h(p)=pi, i.e., the i-th bit of p

– Probabilities: Pr[h(p)=h(q)]=1-D(p,q)/d



Algorithm -- preprocessing

• g(p) = <h1(p),h2(p),…,hk(p)>

• Preprocessing

– Select g1,g2,…,gL

– For all pєX hash p to buckets g1(p),…,gL(p)

– Since the number of possible buckets might be large we 
only maintain the non empty ones

• Running time?



Algorithm -- query

• Query q:

– Retrieve the points from buckets  g1(q),g2(q),…, gL(q) and 
let points retrieved be x1,…,xL

• If D(xi,q)≤r report it

• Otherwise report that there does not exist such a NN 

– Answer the query based on the retrieved points

– Time O(dL)



Applications of LSH in data mining

• Numerous….



Applications

• Find pages with similar sets of words (for 
clustering or classification)

• Find users in Netflix data that watch similar 
movies

• Find movies with similar sets of users

• Find images of related things



How would you do it?

• Finding very similar items might be 
computationally demanding task

• We can relax our requirement to finding 
somewhat similar items



Running example: comparing 
documents

• Documents have common text, but no 
common topic

• Easy special cases:

– Identical documents

– Fully contained documents (letter by letter)

• General case:

– Many small pieces of one document appear out of 
order in another. What do we do then?



Finding similar documents

• Given a collection of documents, find pairs of 
documents that have lots of text in common

– Identify mirror sites or web pages

– Plagiarism

– Similar news articles



Key steps

• Shingling: convert documents (news articles, 
emails, etc) to sets

• LSH: convert large sets to small signatures, 
while preserving the similarity

• Compare the signatures instead of the actual 
documents



Shingles

• A k-shingle (or k-gram) is a sequence of k
characters that appears in a document

• If doc = abcab and k=3, then 2-singles: {ab, bc, 
ca}

• Represent a document by a set of k-shingles



Assumption

• Documents that have similar sets of k-shingles 
are similar: same text appears in the two 
documents; the position of the text does not 
matter

• What should be the value of k?

– What would large or small k mean?



Data model: sets

• Data points are represented as sets (i.e., sets 
of shingles)

• Similar data points have large intersections in 
their sets

– Think of documents and shingles

– Customers and products

– Users and movies



Similarity measures for sets

• Now we have a set representation of the data

• Jaccard coefficient

• A, B sets (subsets of some, large, universe U)

BA

BA
BAsim




),(



Find similar objects using the 
Jaccard similarity

• Naïve method?

• Problems with the naïve method?

– There are too many objects

– Each object consists of too many sets



Speedingup the naïve method

• Represent every object by a signature 
(summary of the object)

• Examine pairs of signatures rather than pairs 
of objects

• Find all similar pairs of signatures

• Check point: check that objects with similar 
signatures are actually similar



Still problems

• Comparing large number of signatures with 
each other may take too much time (although 
it takes less space)

• The method can produce pairs of objects that 
might not be similar (false positives). The 
check point needs to be enforced



Creating signatures

• For object x, signature of x (sign(x)) is much 
smaller (in space) than x

• For objects x, y it should hold that sim(x,y) is 
almost the same as sim(sing(x),sign(y)) 



Intuition behind Jaccard similarity

• Consider two objects: x,y

• a: # of rows of form same as a

• sim(x,y)= a /(a+b+c) 

x y

a 1 1

b 1 0

c 0 1

d 0 0



A type of signatures -- minhashes

• Randomly permute the rows

• h(x): first row (in permuted data) 

in which column x has an 1

• Use several (e.g., 100) independent

hash functions to design a signature

x y

a 1 1

b 1 0

c 0 1

d 0 0

x y

a 0 1

b 0 0

c 1 1

d 1 0



“Surprising” property

• The probability (over all permutations of 
rows) that h(x)=h(y) is the same as sim(x,y)

• Both of them are a/(a+b+c)

• So?

– The similarity of signatures is the fraction of the 
hash functions on which they agree 



Minhash algorithm

• Pick k (e.g., 100) permutations of the rows

• Think of sign(x) as a new vector

• Let sign(x)[i]: in the i-th permutation, the 
index of the first row that has 1 for object x



Example of minhash signatures

• Input matrix

x1 x2 x3 X4

1 1 0 1 0

2 1 0 0 1

3 0 1 0 1

4 0 1 0 1

5 0 1 0 1

6 1 0 1 0

7 1 0 1 0

1

3

7

6

2

5

4

x1 x2 x3 X4

1 1 0 1 0

3 0 1 0 1

7 1 0 1 0

6 1 0 1 0

2 1 0 0 1

5 0 1 0 1

4 0 1 0 1

1 2 1 2



Example of minhash signatures

• Input matrix

x1 x2 x3 X4

1 1 0 1 0

2 1 0 0 1

3 0 1 0 1

4 0 1 0 1

5 0 1 0 1

6 1 0 1 0

7 1 0 1 0

4

2

1

3

6

7

5

x1 x2 x3 X4

4 0 1 0 1

2 1 0 0 1

1 1 0 1 0

3 0 1 0 1

6 1 0 1 0

7 1 0 1 0

5 0 1 0 1

2 1 3 1



Example of minhash signatures

• Input matrix

x1 x2 x3 X4

1 1 0 1 0

2 1 0 0 1

3 0 1 0 1

4 0 1 0 1

5 0 1 0 1

6 1 0 1 0

7 1 0 1 0

3

4

7

6

1

2

5

x1 x2 x3 X4

3 0 1 0 1

4 0 1 0 1

7 1 0 1 0

6 1 0 1 0

1 1 0 1 0

2 1 0 0 1

5 0 1 0 1

3 1 3 1



Example of minhash signatures

• Input matrix

x1 x2 x3 X4

1 1 0 1 0

2 1 0 0 1

3 0 1 0 1

4 0 1 0 1

5 0 1 0 1

6 1 0 1 0

7 1 0 1 0

x1 x2 x3 X4

1 2 1 2

2 1 3 1

3 1 3 1

≈

actual signs

(x1,x2) 0 0

(x1,x3) 0.75 2/3

(x1,x4) 1/7 0

(x2,x3) 0 0

(x2,x4) 0.75 1

(x3,x4) 0 0



Is it now feasible?

• Assume a billion rows

• Hard to pick a random permutation of 
1…billion

• Even representing a random permutation 
requires 1 billion entries!!!

• How about accessing rows in permuted 
order?

• 



Being more practical

• Approximating row permutations: pick k=100
(?) hash functions (h1,…,hk)

for each row r

for each column c

if c has 1 in row r

for each hash function hi do

if hi (r ) is a smaller value than M(i,c) then

M (i,c) = hi (r);

M(i,c) will become the 
smallest value of 
hi(r) for which 
column c has 1 in 
row r; i.e., hi (r) gives 
order of rows for i-th
permutation.



Example of minhash signatures

• Input matrix

x1 x2

1 1 0

2 0 1

3 1 1

4 1 0

5 0 1

x1 x2

1 0 1

2 2 0

h(r) = r + 1 mod 5
g(r) = 2r + 1 mod 5


