Time-series data analysis



Why deal with sequential data?

Because all data is sequential ©
All data items arrive in the data store in some order

Examples
— transaction data
— documents and words

In some (or many) cases the order does not matter

In many cases the order is of interest



Time-series data

sunspot dataset
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e Financial time series, process monitoring...



Questions

 What is the structure of sequential data?

* Can we represent this structure compactly
and accurately?




Sequence segmentation

Gives an accurate representation of the structure of sequential data

How?

— By trying to find homogeneous segments

Segmentation question:

Can a sequence T={t,,t,,...,t } be described as a concatenation of
subsequences S,,S,,...,S, such that each S, is in some sense homogeneous?

The corresponding notion of segmentation in unordered data is clustering



Dynamic-programming algorithm

Sequence T, length n, k segments, cost function E(), table
M

Fori=1ton

— Set M[1,i]=E(T[1...1]) //Everything in one cluster
For j=1to k

— Set M[j,j] = 0 //each point in its own cluster
For j=2 to k

— Fori=j+1ton
* Set M[j,i] = min,_{M[j-1,i]+E(T[i’+1...i])}
To recover the actual segmentation (not just the optimal
cost) store also the minimizing values i’

Takes time O(n?%k), space O(kn)



Example




Basic definitions

* Sequence T ={t,t,,..t }: an ordered set of n d-dimensional real
points t.eR®

A k-segmentation S: a partition of T into k contiguous segments
{S1,S0--sSi)

— Each segment seS is represented by a single value p.eRY(the
representative of the segment)

* Error E (S): The error of replacing individual points with
representatives 1
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The k-segmentation problem

Given a sequence | of length 1 and a value I, find a -

segmentation of | such that the = _erroriis

minimized.

Common cases for the error function

E;:p=1andp=2.

— When p =1, the best . corresponds the median of the points in
segment s.

— When p = 2, the best |, corresponds to the mean of the points in
segment s.



Optimal solution for the k-segmentation
problem

e Bellman’61l] The k-segmentation problem can be solved
optimally using a standard dynamic-programming algorithm

E,(Sopt(T[1...1],k)) =
min,;—,, {F, (Sopt(T[1...7],k—1))
+10, (Sopt (X7 +1,....n]. 1))}

* Running time O(n?k)

— Too expensive for large datasets!




Heuristics

Bottom-up greedy (BU): O(nlogn)
— [Keogh and Smyth’97, Keogh and Pazzani’98]

Top-down greedy (TD): O(nlogn)
— [Douglas and Peucker’73, Shatkay and Zdonik’96, Lavrenko et. al’00]

Global Iterative Replacement (GiR): O(nl)
— [Himberg et. al '01]

Local Iterative Replacement (LiR): O(nl)
— [Himberg et. al '01]



Approximation algorithm

e [Theorem] The segmentation problem can be approximated
within a constant factor of 3 for both E, and E, error measures.
That is,

E_ (Sps) <3E, (Sopr) P =12

OPT

e The running time of the approximation algorithm is:

O(n4/3k5/3)




Divide 'n Segment (DnS) algorithm

e Main idea

— Split the sequence arbitrarily into subsequences
— Solve the k-segmentation problem in each subsequence
— Combine the results

e Advantages

— Extremely simple
— High quality results

— Can be applied to other segmentation problems[Gionis’03,
Haiminen’04,Bingham’06]



DnS algorithm - Details

Input: Sequence T, integer k
Output: a k-segmentation of T

1. Partition sequence T arbitrarily into m disjoint intervals
T,Ts5.., T

2. For each interval T, solve optimally the k- segmentation
problem using DP algorithm

3. Let T' be the concatenation of mk representatives produced in
SteQ 2. Each representative is weighted with the length of the segment it represents

4. Solve optimally the k-segmentation problem for T’ using the
DP algorithm and output this segmentation as the final
segmentation




The DnS algorithm

Input sequence T consisting of n=20 points (k=2)
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The DnS algorithm — Step 1

3 disjoint intervals
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Partition the sequence into m
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The DnS algorithm — Step 2

Solve optimally the k-segmentation problem into each partition (k=2)
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The DnS algorithm — Step 2

Solve optimally the k-segmentation problem into each partition (k=2)
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The DnS algorithm — Step 3

Sequence T consisting of mk=6 representantives
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The DnS algorithm — Step 4

Solve k-segmentation on T (k=2)
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Running time

* Inthe case of equipartition in Step 1, the running time of the
algorithm as a function of m is:

2

R(m) = m[ij k + (mk )k

m

w N

7\_|3

e The function R(m) is minimized for m, =£

O Running time R(mo) _ 2n4/3k5/3



The segmentation error

e [Theorem] The segmentation error of the DnS algorithms is at
most three times the error of the optimal (DP) algorithm for
both E; and E, error measures.

E ., (Spns) <3E_(Sopr) P=12




Proof for E,

— A,: the representative of point t in the optimal segmentation

— T: the representative of point t in the segmentation of Step 2

100 T
90 +

80 T
70 T

60 T
50 T

40 T I

[

30 T 5 5 I I
20 t e o —0—.r._-’—'1|

l

A 4



e A, the representative of point t in the optimal segmentation

P ro Of e Tt:the representative of point t in the segmentation of Step 2
e W, the representative of point t in the final segmentation in Step 4

Lemma: > d (t,z) <> d (1, 2,)

teT teT

E,(Sps ) = Z d, (t, ;)

teT

< Z (d,(t,z)+d,(z, 1)) (triangle inequality)

teT

<> (d,(t,z)+d,(r,4,)) (optimality of DP)

teT

<> (d,(t,z)+d,(z,t)+d,(t,2,)) (triangle inequality)

teT

<2-> d(t,4)+ D> d (t,1,) (Lemma)

teT teT

— 3E(S

OPT )



Trading speed for accuracy

Recursively divide (into m pieces) and segment

If x=(n.)/2, where n. the length of the sequence in the i-th
recursive level (n,=n) then

— running time of the algorithm is O(nloglogn)
— the segmentation error is at most O(logn) worse than the optimal

If x =const, the running time of the algorithm is O(n), but
there are no guarantees for the segmentation error



Error Ratio

Real datasets — DnS algorithm
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eal datasets — DnS algorithm
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Speed vs. accuracy in practice

1.009 . .

1.008 - | T

=& darwin
1.007-- - I Winding
- » phone

4 OO e e
e g
W 1.005 S
o :
S 1. e
L |
1. |
OO |- e
’__.-::‘;:__-‘. - »*
1 OO1J‘,:';_"_”;"_";';';’_’_"__"_’_"__"_’_”.’.'L-"-i-"';;"‘"’ """ §""""""""'"-‘-';,g'_"_";';'_";"_1
e g
1 - | | | 1
1 2 3 4 5 6

Number of recursive calls



