
Reducing the collection of itemsets: 
alternative representations and 

combinatorial problems 



Too many frequent itemsets 

• If {a1, …, a100}  is a frequent itemset, then there 
are 

 

 1.27*1030 frequent sub-patterns! 

 

• There should be some more condensed way to 
describe the data 
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Frequent itemsets maybe too many to be 
helpful 

• If there are many and large frequent itemsets 
enumerating all of them is costly. 

 

• We may be interested in finding the boundary 
frequent patterns. 

 

• Question: Is there a good definition of such 
boundary? 
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Borders of frequent itemsets 

• Itemset X is more specific than itemset Y if X superset of Y 
(notation: Y<X). Also, Y is more general than X (notation: X>Y) 

 

• The Border: Let S be a collection of frequent itemsets and P 
the lattice of itemsets. The border Bd(S) of S consists of all 
itemsets X such that all more general itemsets than X are in S 
and no pattern more specific than X is in S. 
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Positive and negative border 

• Border 

 

 
• Positive border: Itemsets in the border that are also frequent 

(belong in S) 

 
• Negative border: Itemsets in the border that are not frequent 

(do not belong in S) 
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Examples with borders 

• Consider a set of items from the alphabet: 
{A,B,C,D,E} and the collection of frequent sets  

   S = {{A},{B},{C},{E},{A,B},{A,C},{A,E},{C,E},{A,C,E}} 

• The negative border of collection S is 

    Bd-(S) = {{D},{B,C},{B,E}} 

• The positive border of collection S is 

    Bd+(S) = {{A,B},{A,C,E}} 

 

 

 



Descriptive power of the borders 

• Claim: A collection of frequent sets S can be 
fully described using only the positive border 
(Bd+(S)) or only the negative border (Bd-(S)). 



Maximal patterns 

Frequent patterns without proper frequent super 
pattern 
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An itemset is maximal frequent if none of its immediate supersets is 

frequent 



Maximal patterns 

• The set of maximal patterns is the same as the 
positive border 

 

• Descriptive power of maximal patterns: 

– Knowing the set of all maximal patterns allows us to 
reconstruct the set of all frequent itemsets!! 

 

– We can only reconstruct the set not the actual 
frequencies  



Closed patterns 

• An itemset is closed if none of its immediate supersets has the 
same support as the itemset 

 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2



Maximal vs Closed Itemsets 

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids 

Not supported by 

any transactions 



Maximal vs Closed Frequent Itemsets 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed and 

maximal 

Closed but 

not maximal 



Why are closed patterns interesting? 

• s({A,B}) = s(A), i.e., conf({A}{B}) = 1 
 

• We can infer that for every itemset X ,   
 s(A U {X}) =  s({A,B} U X) 

 
• No need to count the frequencies of sets X U {A,B} from the 

database! 
 

• If there are lots of rules with confidence 1, then a significant 
amount of work can be saved 
 
– Very useful if there are strong correlations between the items and 

when the transactions in the database are similar 

 
 



Why closed patterns are interesting? 

• Closed patterns and their frequencies alone 
are sufficient representation for all the 
frequencies of all frequent patterns 

 

• Proof: Assume a frequent itemset X: 

– X is closed  s(X) is known  

– X is not closed   

 s(X) = max {s(Y) | Y is closed and X subset of Y} 



Maximal vs Closed sets 

• Knowing all maximal 
patterns (and their 
frequencies) allows us to 
reconstruct the set of 
frequent patterns 
 

• Knowing all closed 
patterns and their 
frequencies allows us to 
reconstruct the set of all 
frequent patterns and 
their frequencies 
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A more algorithmic approach to 
reducing the collection of frequent 

itemsets 



Prototype problems: Covering 
problems 

• Setting:  
– Universe of N elements U = {U1,…,UN} 

– A set of n sets S = {s1,…,sn} 

– Find a collection C of sets in S (C subset of S) such that 
UcєCc contains many elements from U 

• Example: 
– U: set of documents in a collection 

– si: set of documents that contain term ti 

– Find a collection of terms that cover most of the 
documents  



Prototype covering problems 

• Set cover problem: Find a small collection C of sets from S  
such that all elements in the universe U are covered by 
some set in C 

 
• Best collection problem: find a collection C of k sets from S 

such that the collection covers as many elements from the 
universe U as possible 
 

• Both problems are NP-hard 
 

• Simple approximation algorithms with provable properties 
are available and very useful in practice 



Set-cover problem 

• Universe of N elements U = {U1,…,UN} 
• A set of n sets S = {s1,…,sn} such that Uisi =U 

 
 

• Question: Find the smallest number of sets from 
S to form collection C (C subset of S) such that 
UcєCc=U  
 

• The set-cover problem is NP-hard (what does this 
mean?) 



Trivial algorithm 

• Try all subcollections of S 

 

• Select the smallest one that covers all the 
elements in U 

 

• The running time of the trivial algorithm is 
O(2|S||U|) 

 

• This is way too slow 



Greedy algorithm for set cover 

• Select first the largest-cardinality set s from S 

 

• Remove the elements from s from U 

 

• Recompute the sizes of the remaining sets in S 

 

• Go back to the first step 



As an algorithm 

• X = U 

• C = {} 

• while X is not empty do 

– For all sєS let as=|s intersection X| 

– Let s be such that as is maximal 

– C = C U {s} 

– X = X\ s 



How can this go wrong? 

• No global consideration of how good or bad a 
selected set is going to be 



How good is the greedy algorithm? 

• Consider a minimization problem 
– In our case we want to minimize the cardinality of set C 

 

• Consider an instance I, and cost  a*(I) of the optimal solution 
– a*(I): is the minimum number of sets in C that cover all elements in U 

 

• Let a(I) be the cost of the approximate solution 
– a(I): is the number of sets in C that are picked by the greedy algorithm 

 

• An algorithm for a minimization problem has approximation factor F if for 
all instances I we have that  

    a(I)≤F x a*(I) 
 

• Can we prove any approximation bounds for the greedy algorithm for set 
cover ?  



How good is the greedy algorithm for 
set cover? 

• (Trivial?) Observation: The greedy algorithm 
for set cover has approximation factor b = 
|smax|, where smax is the set in S with the 
largest cardinality  

• Proof: 

– a*(I)≥N/|smax| or N ≤ |smax|a*(I) 

– a(I) ≤ N ≤ |smax|a*(I) 



How good is the greedy algorithm for 
set cover? A tighter bound 

• The greedy algorithm for set cover has 
approximation factor F = O(log |smax|) 

 

• Proof: (From CLR “Introduction to 
Algorithms”) 

 



Best-collection problem 

• Universe of N elements U = {U1,…,UN} 
• A set of n sets S = {s1,…,sn} such that Uisi =U 

 
 

• Question: Find the a collection C consisting of k sets 
from S such that f (C) = |UcєCc| is maximized  
 

• The best-colection problem is NP-hard  
 

• Simple approximation algorithm has approximation 
factor F = (e-1)/e 



Greedy approximation algorithm for 
the best-collection problem 

• C = {} 

• for every set s in S and not in C compute the 
gain of s:  

   g(s) = f(C U {s}) – f(C) 

• Select the set s with the maximum gain 

• C = C U {s} 

• Repeat until C has k elements 



Basic theorem 

• The greedy algorithm for the best-collection 
problem has approximation factor F = (e-1)/e 

 

• C* : optimal collection of cardinality k 

• C : collection output by the greedy algorithm 

• f(C ) ≥ (e-1)/e x f(C*) 



Submodular functions and the greedy 
algorithm 

• A function f (defined on sets of some universe)  is 
submodular if  
– for all sets S, T such that S is subset of T and x any 

element in the universe 

– f(S U {x}) – f(S ) ≥ f(T U {x} ) – f(T) 

 

• Theorem: For all maximization problems where 
the optimization function is submodular, the 
greedy algorithm has approximation factor  

    F = (e-1)/e  



Again: Can you think of a more 
algorithmic approach to reducing the 

collection of frequent itemsets 



Approximating a collection of frequent 
patterns 

• Assume a collection of frequent patterns S 
 

• Each pattern X є S is described by the patterns 
that covers 

• Cov(X) = { Y | Y є S and Y subset of X} 
 

• Problem: Find k patterns from S to form set C 
such that  

    |UXєC Cov(X)|  
 is maximized  
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