Clustering: Partition Clustering
Lecture outline

• Distance/Similarity between data objects
• Data objects as geometric data points
• Clustering problems and algorithms
 – K-means
 – K-median
 – K-center
What is clustering?

• A **grouping** of data objects such that the objects **within a group are similar** (or related) to one another **and different from** (or unrelated to) the objects in other groups.
Outliers

- **Outliers** are **objects that do not belong to any cluster** or form clusters of very small cardinality.

- In some applications we are interested in discovering outliers, not clusters (**outlier analysis**).
Why do we cluster?

• Clustering: given a collection of data objects group them so that
 – Similar to one another within the same cluster
 – Dissimilar to the objects in other clusters

• Clustering results are used:
 – As a stand-alone tool to get insight into data distribution
 • Visualization of clusters may unveil important information
 – As a preprocessing step for other algorithms
 • Efficient indexing or compression often relies on clustering
Applications of clustering?

• Image Processing
 – cluster images based on their visual content

• Web
 – Cluster groups of users based on their access patterns on webpages
 – Cluster webpages based on their content

• Bioinformatics
 – Cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)

• Many more...
The clustering task

- Group observations into groups so that the observations belonging in the same group are similar, whereas observations in different groups are different.

- **Basic questions:**
 - What does “similar” mean?
 - What is a good partition of the objects? I.e., how is the quality of a solution measured?
 - How to find a good partition of the observations?
Observations to cluster

- **Real-value attributes/variables**
 - e.g., salary, height

- **Binary attributes**
 - e.g., gender (M/F), has_cancer(T/F)

- **Nominal (categorical) attributes**
 - e.g., religion (Christian, Muslim, Buddhist, Hindu, etc.)

- **Ordinal/Ranked attributes**
 - e.g., military rank (soldier, sergeant, lieutenant, captain, etc.)

- **Variables of mixed types**
 - multiple attributes with various types
Observations to cluster

• Usually data objects consist of a set of attributes (also known as **dimensions**)

• J. Smith, 20, 200K

• If all d dimensions are *real-valued* then we can visualize each data point as points in a d-**dimensional space**

• If all d dimensions are *binary* then we can think of each data point as a *binary vector*
Distance functions

- The distance $d(x, y)$ between two objects x and y is a metric if

 - $d(i, j) \geq 0$ (non-negativity)
 - $d(i, i) = 0$ (isolation)
 - $d(i, j) = d(j, i)$ (symmetry)
 - $d(i, j) \leq d(i, h) + d(h, j)$ (triangular inequality) [Why do we need it?]

- The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.

- Weights may be associated with different variables based on applications and data semantics.
Data Structures

- **data** matrix

\[
\begin{bmatrix}
 x_{11} & \cdots & x_{1\ell} & \cdots & x_{1d} \\
 \vdots & \ddots & \vdots & \cdots & \vdots \\
 x_{i1} & \cdots & x_{i\ell} & \cdots & x_{id} \\
 \vdots & \cdots & \vdots & \cdots & \vdots \\
 x_{n1} & \cdots & x_{n\ell} & \cdots & x_{nd}
\end{bmatrix}
\]

- **Distance** matrix

\[
\begin{bmatrix}
 0 & \cdots & d(2,1) & 0 \\
 d(3,1) & \cdots & d(3,2) & 0 \\
 \vdots & \ddots & \vdots & \vdots \\
 d(n,1) & \cdots & d(n,2) & \cdots & 0
\end{bmatrix}
\]
Distance functions for binary vectors

- **Jaccard similarity** between binary vectors X and Y
 \[JSim(X,Y) = \frac{X \cap Y}{X \cup Y} \]

- **Jaccard distance** between binary vectors X and Y
 \[Jdist(X,Y) = 1 - JSim(X,Y) \]

Example:
- $JSim = 1/6$
- $Jdist = 5/6$

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Distance functions for real-valued vectors

- **L_p** norms or *Minkowski distance*:

 \[L_p(x,y) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p + \ldots + |x_d - y_d|^p \right)^{1/p} = \left(\sum_{i=1}^{d} (x_i - y_i)^p \right)^{1/p} \]

 where \(p \) is a positive integer

- If \(p = 1 \), **L_1** is the *Manhattan (or city block) distance*:

 \[L_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + \ldots + |x_d - y_d| = \sum_{i=1}^{d} |x_i - y_i| \]
Distance functions for real-valued vectors

• If $p = 2$, L_2 is the Euclidean distance:

$$ d(x,y) = \sqrt{(|x_1 - y_1|^2 + |x_2 - y_2|^2 + \ldots + |x_d - y_d|^2)} $$

• Also one can use weighted distance:

$$ d(x,y) = \sqrt{(w_1 |x_1 - x_1|^2 + w_2 |x_2 - x_2|^2 + \ldots + w_d |x_d - y_d|^2)} $$

$$ d(x,y) = w_1 |x_1 - y_1| + w_2 |x_2 - y_2| + \ldots + w_d |x_d - y_d| $$

• Very often L_p^p is used instead of L_p (why?)
Partitioning algorithms: basic concept

• Construct a partition of a set of \(n \) objects into a set of \(k \) clusters
 – Each object belongs to **exactly one** cluster
 – The number of clusters \(k \) is given in advance
The k-means problem

- Given a set X of n points in a d-dimensional space and an integer k

- **Task**: choose a set of k points $\{c_1, c_2, \ldots, c_k\}$ in the d-dimensional space to form clusters $\{C_1, C_2, \ldots, C_k\}$ such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_2^2(x - c_i)$$

is minimized

- Some special cases: $k = 1, k = n$
Algorithmic properties of the k-means problem

• NP-hard if the dimensionality of the data is at least 2 ($d \geq 2$)

• Finding the best solution in polynomial time is infeasible

• For $d=1$ the problem is solvable in polynomial time (how?)

• A simple iterative algorithm works quite well in practice
The k-means algorithm

• One way of solving the k-means problem

• Randomly pick \(k \) cluster centers \(\{c_1, \ldots, c_k\} \)

• For each \(i \), set the cluster \(C_i \) to be the set of points in \(X \) that are closer to \(c_i \) than they are to \(c_j \) for all \(i \neq j \)

• For each \(i \) let \(c_i \) be the center of cluster \(C_i \) (mean of the vectors in \(C_i \))

• Repeat until convergence
Properties of the k-means algorithm

• Finds a local optimum

• Converges often quickly (but not always)

• The choice of initial points can have large influence in the result
Two different K-means Clusterings

Original Points

Optimal Clustering

Sub-optimal Clustering
Discussion k-means algorithm

- Finds a local optimum
- Converges often quickly (but not always)
- The choice of initial points can have large influence
 - Clusters of different densities
 - Clusters of different sizes
- Outliers can also cause a problem (Example?)
Some alternatives to random initialization of the central points

• Multiple runs
 – Helps, but probability is not on your side

• Select original set of points by methods other than random. E.g., pick the most distant (from each other) points as cluster centers (kmeans++ algorithm)
The k-median problem

• Given a set X of n points in a d-dimensional space and an integer k

• Task: choose a set of k points $\{c_1, c_2, \ldots, c_k\}$ from X and form clusters $\{C_1, C_2, \ldots, C_k\}$ such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_1(x, c_i)$$

is minimized
The k-medoids algorithm

- *Or ... PAM* (Partitioning Around Medoids, 1987)

 - Choose randomly k medoids from the original dataset X

 - Assign each of the n-k remaining points in X to their closest medoid

 - Iteratively replace one of the medoids by one of the non-medoids if it improves the total clustering cost
Discussion of PAM algorithm

• The algorithm is very similar to the k-means algorithm

• It has the same advantages and disadvantages

• How about efficiency?
CLARA (Clustering Large Applications)

• It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output

• **Strength**: deals with larger data sets than *PAM*

• **Weakness**:
 – Efficiency depends on the sample size
 – A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased
The k-center problem

- Given a set X of n points in a d-dimensional space and an integer k

- **Task:** find a partitioning of the points in X into k clusters $\{C_1, C_2, \ldots, C_k\}$, such that the maximum cluster diameter (i.e., the distance of the two furthest points with the cluster) is minimized

$$R(C) = \max_{C_j} \text{Diameter}(C_j)$$
Algorithmic properties of the k-centers problem

• NP-hard if the dimensionality of the data is at least 2 (d\geq 2)

• Finding the best solution in polynomial time is infeasible

• For d=1 the problem is solvable in polynomial time (how?)

• A simple combinatorial algorithm works well in practice
The furthest-first traversal algorithm

• Pick any data point and label it as point 1
• For $i=2,3,...,k$
 – Find the unlabelled point furthest from $\{1,2,...,i-1\}$ and label it as i.

 //Use $d(x,S) = \min_{y \in S} d(x,y)$ to identify the distance //of a point from a set
 – $\pi(i) = \arg\min_{j<i} d(i,j)$
 – $R_i = d(i,\pi(i))$

• Assign the remaining unlabelled points to their closest labelled point
The furthest-first traversal is a 2-approximation algorithm

• **Claim1:** \(R_1 \geq R_2 \geq ... \geq R_n \)

• **Proof:**

 \[R_j = d(j, \pi(j)) = d(j, \{1, 2, ..., j-1\}) \leq d(j, \{1, 2, ..., i-1\}) \quad \text{//}j > i \]

 \[\leq d(i, \{1, 2, ..., i-1\}) = R_i \]
The furthest-first traversal is a 2-approximation algorithm

- **Claim 2:** If C is the clustering reported by the farthest algorithm, then $R(C) = R_{k+1}$

- **Proof:**
 - For all $i > k$ we have that
 \[d(i, \{1,2,...,k\}) \leq d(k+1,\{1,2,...,k\}) = R_{k+1} \]
The furthest-first traversal is a 2-approximation algorithm

- **Theorem:** If C is the clustering reported by the farthest algorithm, and C^* is the optimal clustering, then $R(C) \leq 2 \times R(C^*)$

- **Proof:**
 - Let $C^*_1, C^*_2, \ldots, C^*_k$ be the clusters of the optimal k-clustering.

 - If these clusters contain points $\{1, \ldots, k\}$ then $R(C) \leq 2R(C^*)$ (triangle inequality)

 - Otherwise suppose that one of these clusters contains two or more of the points in $\{1, \ldots, k\}$. These points are at distance at least R_k from each other. Thus clusters must have radius

 $\frac{1}{2} R_k \geq \frac{1}{2} R_{k+1} = \frac{1}{2} R(C)$
What is the right number of clusters?

• ...or who sets the value of k?

• For n points to be clustered consider the case where $k=n$. What is the value of the error function

• What happens when $k = 1$?

• Since we want to minimize the error why don’t we select always $k = n$?
Occam’s razor and the minimum description length principle

- Clustering provides a description of the data
- For a description to be good it has to be:
 - Not too general
 - Not too specific

- Penalize for every extra parameter that one has to pay

- Penalize the number of bits you need to describe the extra parameter

- So for a clustering C, extend the cost function as follows:
 - $\text{NewCost}(C) = \text{Cost}(C) + |C| \times \log n$