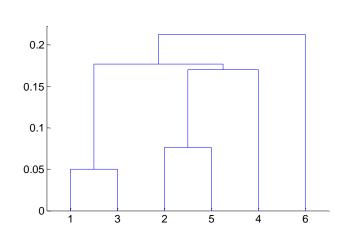
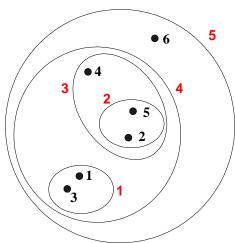
Hierarchical Clustering

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits





Strengths of Hierarchical Clustering

- No assumptions on the number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

- Hierarchical clusterings may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

Hierarchical Clustering: Problem definition

Given a set of points X = {x₁,x₂,...,x_n} find a sequence of *nested partitions* P₁,P₂,...,P_n of X, consisting of 1,
2,...,n clusters respectively such that Σ_{i=1...n} Cost(P_i) is minimized.

- Different definitions of Cost(P_i) lead to different hierarchical clustering algorithms
 - Cost(P_i) can be formalized as the cost of any partitionbased clustering

Hierarchical Clustering Algorithms

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Complexity of hierarchical clustering

 Distance matrix is used for deciding which clusters to merge/split

At least quadratic in the number of data points

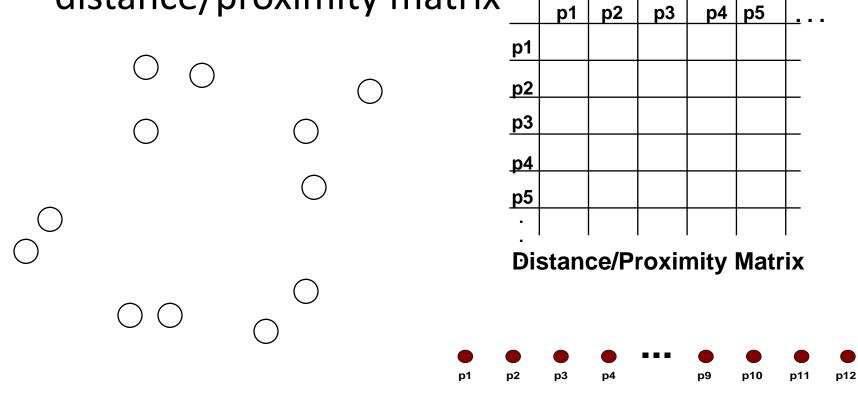
Not usable for large datasets

Agglomerative clustering algorithm

- Most popular hierarchical clustering technique
- Basic algorithm
 - 1. Compute the distance matrix between the input data points
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the distance between two clusters
 - Different definitions of the distance between clusters lead to different algorithms

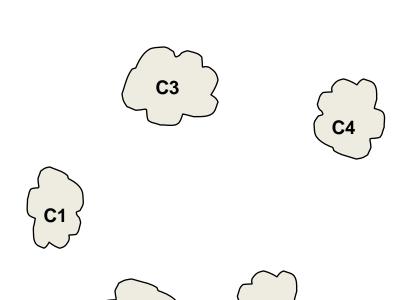
Input/Initial setting

 Start with clusters of individual points and a distance/proximity matrix



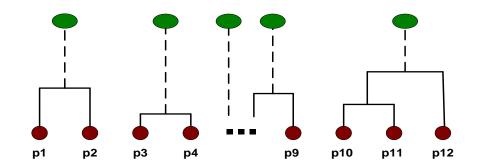
Intermediate State

• After some merging steps, we have some clusters



	C1	C2	С3	C4	C 5
C 1					
C2					
C 3					
C4					
C 5					

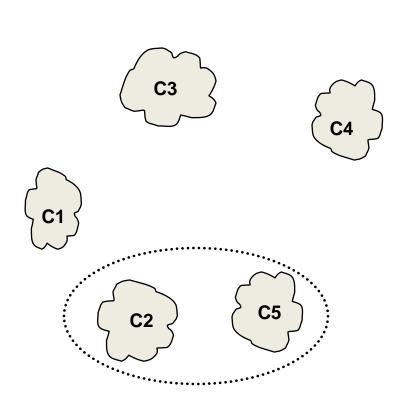
Distance/Proximity Matrix

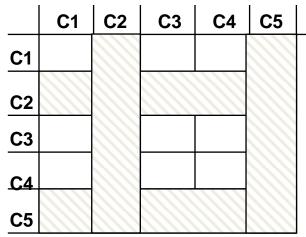


Intermediate State

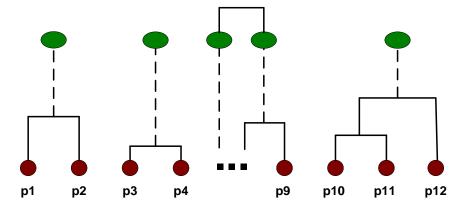
• Merge the two closest clusters (C2 and C5) and update the distance

matrix.



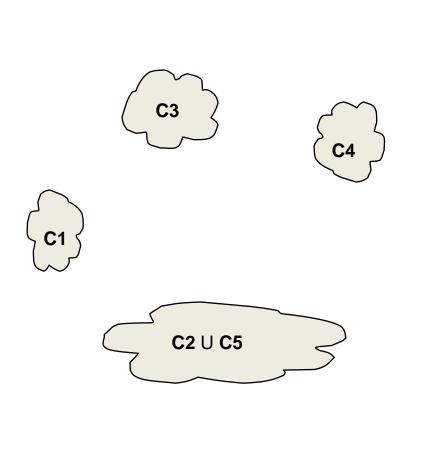


Distance/Proximity Matrix

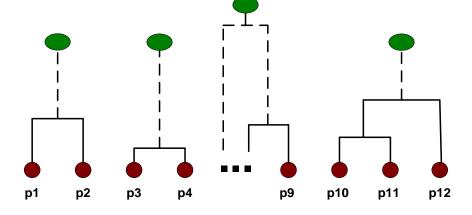


After Merging

"How do we update the distance matrix?"



			C2 U			
		C1	U C5	C 3	C4	
	C 1		?			
C2 U	C5	?	?	?	?	
	C 3		?			
	C4		?			



Distance between two clusters

Each cluster is a set of points

- How do we define distance between two sets of points
 - Lots of alternatives
 - Not an easy task

Distance between two clusters

Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j

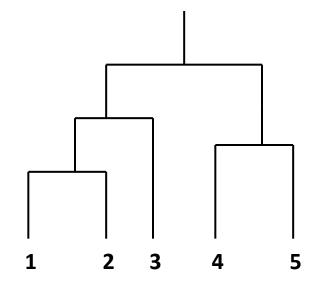
 The distance is defined by the two most similar objects

$$D_{sl}(C_i, C_j) = \min_{x,y} \{d(x, y) | x \in C_i, y \in C_j\}$$

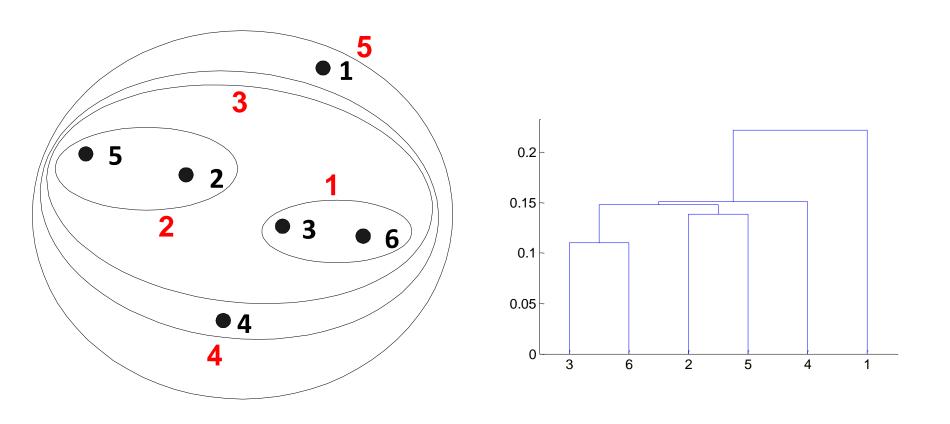
Single-link clustering: example

 Determined by one pair of points, i.e., by one link in the proximity graph.

				1 4	
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00



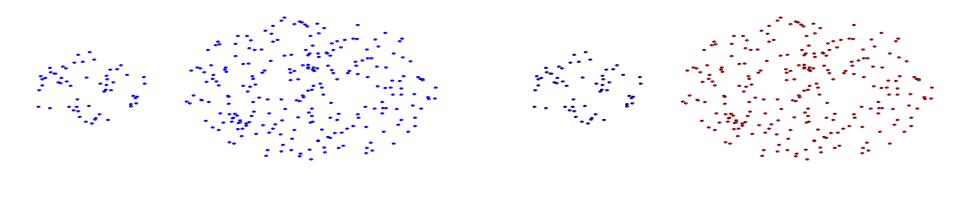
Single-link clustering: example



Nested Clusters

Dendrogram

Strengths of single-link clustering

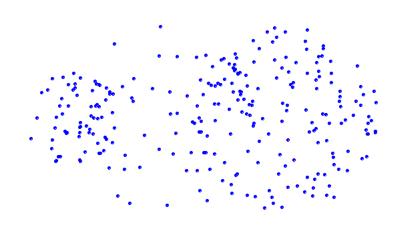


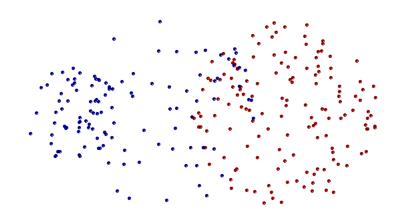
Two Clusters

Can handle non-elliptical shapes

Original Points

Limitations of single-link clustering





Original Points

Two Clusters

- Sensitive to noise and outliers
- It produces long, elongated clusters

Distance between two clusters

Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j

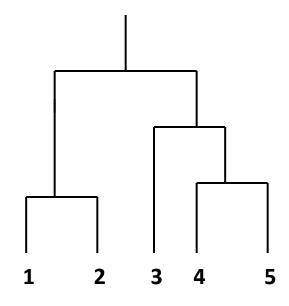
 The distance is defined by the two most dissimilar objects

$$D_{cl}\left(C_{i}, C_{j}\right) = \max_{x, y} \left\{ d(x, y) \middle| x \in C_{i}, y \in C_{j} \right\}$$

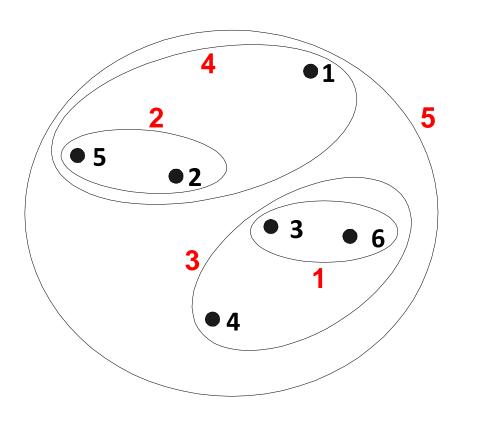
Complete-link clustering: example

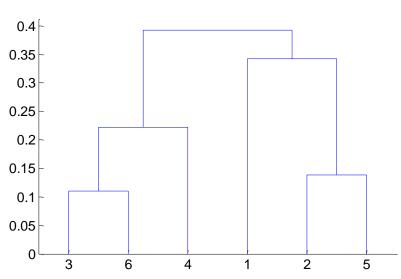
 Distance between clusters is determined by the two most distant points in the different clusters

	I 1	l 2	I 3	 4	1 5
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
I 3	0.10	0.70	1.00	0.40	0.30
I 4	0.65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	1.00



Complete-link clustering: example

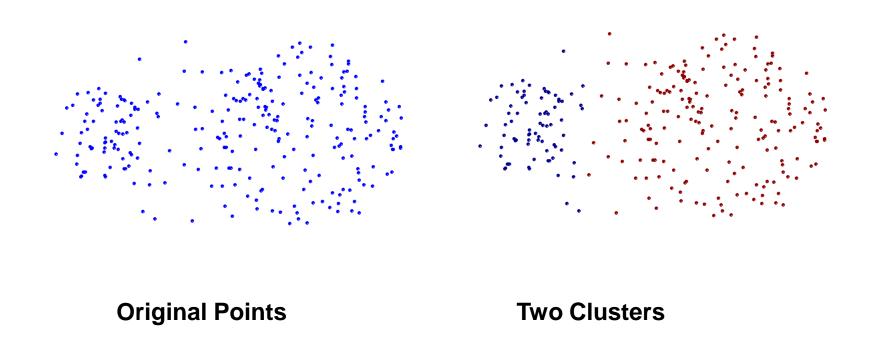




Nested Clusters

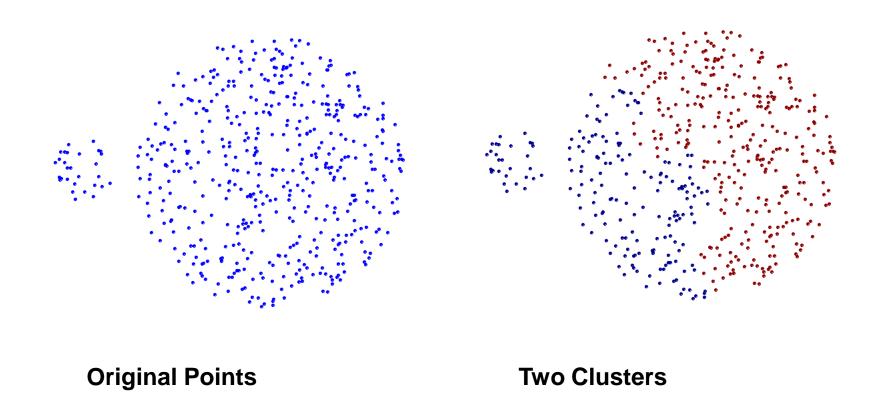
Dendrogram

Strengths of complete-link clustering



- More balanced clusters (with equal diameter)
- Less susceptible to noise

Limitations of complete-link clustering



- Tends to break large clusters
- All clusters tend to have the same diameter small clusters are merged with larger ones

Distance between two clusters

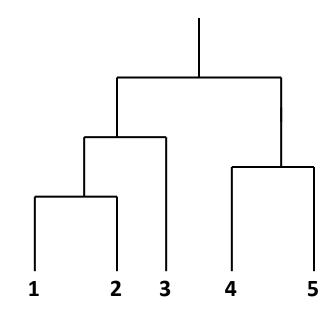
Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_i

$$D_{avg}\left(C_{i}, C_{j}\right) = \frac{1}{\left|C_{i}\right| \times \left|C_{j}\right|} \sum_{x \in C_{i}, y \in C_{j}} d(x, y)$$

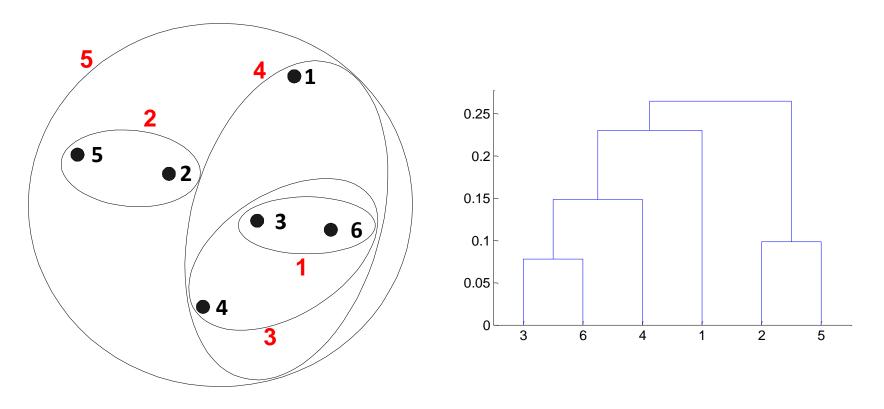
Average-link clustering: example

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

	I 1	12	I 3	 4	1 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
1 4	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00



Average-link clustering: example



Nested Clusters

Dendrogram

Average-link clustering: discussion

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Distance between two clusters

 Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{centroids} \left(C_i, C_j\right) = d\left(r_i, r_j\right)$$

Distance between two clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ij}

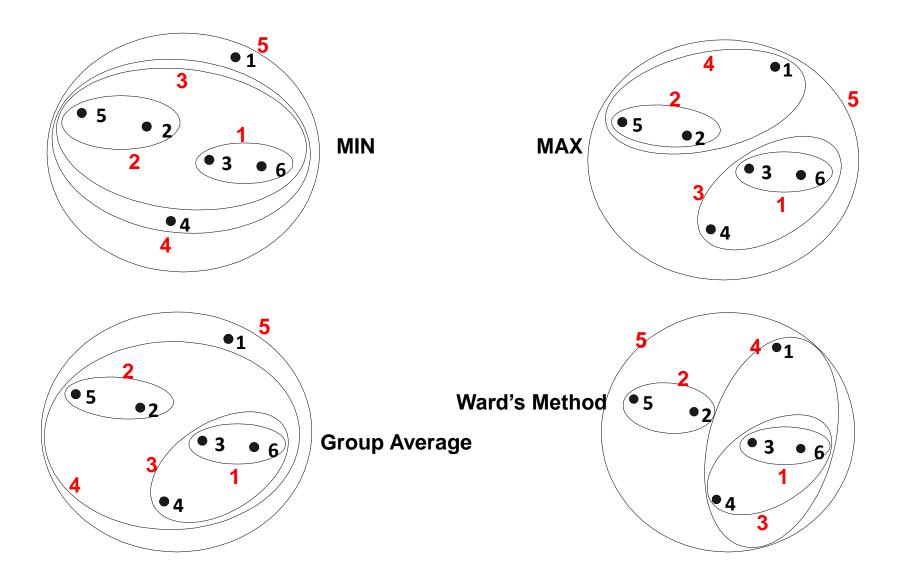
$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$

- r_i: centroid of C_i
- r_i: centroid of C_i
- r_{ij}: centroid of C_{ij}

Ward's distance for clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of k-means
 - Can be used to initialize k-means

Hierarchical Clustering: Comparison



Hierarchical Clustering: Time and Space requirements

- For a dataset X consisting of n points
- O(n²) space; it requires storing the distance matrix
- O(n³) time in most of the cases
 - There are n steps and at each step the size n² distance matrix must be updated and searched
 - Complexity can be reduced to O(n² log(n)) time for some approaches by using appropriate data structures

Divisive hierarchical clustering

Start with a single cluster composed of all data points

Split this into components

Continue recursively

Computationally intensive, less widely used than agglomerative methods