Lecture outline

- Density-based clustering (DB-Scan)
 - Reference: Martin Ester, Hans-Peter Kriegel, Jorg Sander,
 Xiaowei Xu: A Density-Based Algorithm for Discovering
 Clusters in Large Spatial Databases with Noise. KDD 2006
- Co-clustering (or bi-clustering)
- References:
 - A. Anagnostopoulos, A. Dasgupta and R. Kumar: Approximation Algorithms for co-clustering, PODS 2008.
 - K. Puolamaki. S. Hanhijarvi and G. Garriga: An approximation ratio for biclustering, Information Processing Letters 2008.

Density-Based Clustering Methods

 Clustering based on density (local cluster criterion), such as density-connected points

- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise

Classification of points in densitybased clustering

- Core points: Interior points of a density-based cluster. A point p is a core point if for distance Eps:
 - $|N_{Eps}(p)={q | dist(p,q) <= ε}| ≥ MinPts$

 Border points: Not a core point but within the neighborhood of a core point (it can be in the neighborhoods of many core points)

Noise points: Not a core or a border point

Core, border and noise points

Core, Border and Noise points

Original Points

Point types: core border

and noise

Clusters output by DBScan

- Resistant to Noise
- Can handle clusters of different shapes and sizes

Classification of points in densitybased clustering

- Core points: Interior points of a density-based cluster. A point p is a core point if for distance Eps:
 - $|N_{Eps}(p)={q | dist(p,q) <= ε}| ≥ MinPts$

 Border points: Not a core point but within the neighborhood of a core point (it can be in the neighborhoods of many core points)

Noise points: Not a core or a border point

DBSCAN: The Algorithm

- Label all points as core, border, or noise points
- Eliminate noise points
- Put an edge between all core points that are within *Eps* of each other
- Make each group of connected core points into a separate cluster
- Assign each border point to one of the cluster of its associated core points

Time and space complexity of DBSCAN

 For a dataset X consisting of n points, the time complexity of DBSCAN is O(n x time to find points in the Eps-neighborhood)

Worst case O(n²)

 In low-dimensional spaces O(nlogn); efficient data structures (e.g., kd-trees) allow for efficient retrieval of all points within a given distance of a specified point

When DBSCAN Does NOT Work Well

DBScan can fail to identify clusters of varying densities

Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

When DBSCAN Does NOT Work Well

Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Strengths and weaknesses of DBSCAN

Resistant to noise

- Finds clusters of arbitrary shapes and sizes
- Difficulty in identifying clusters with varying densities
- Problems in high-dimensional spaces; notion of density unclear

 Can be computationally expensive when the computation of nearest neighbors is expensive

Lecture outline

Density-based clustering

- Co-clustering (or bi-clustering)
- References:
 - A. Anagnostopoulos, A. Dasgupta and R. Kumar: Approximation Algorithms for co-clustering, PODS 2008.
 - K. Puolamaki. S. Hanhijarvi and G. Garriga: An approximation ratio for biclustering, Information Processing Letters 2008.

Clustering

- m points in \mathbf{R}^n
- Group them to k clusters
- Represent them by a matrix $A \in \mathbb{R}^{m \times n}$
 - A point corresponds to a row of A
- **Cluster:** Partition the rows to k

Co-Clustering

• Co-Clustering: Cluster rows and columns of *A* simultaneously:

Motivation: Sponsored Search

- Advertisers bid on keywords
- A user makes a query
- Show ads of advertisers that are relevant and have high bids
- User clicks or not an ad

Motivation: Sponsored Search

- For every
 (advertiser, keyword) pair
 we have:
 - Bid amount
 - Impressions
 - # clicks
- Mine information at query time
 - Maximize # clicks / revenue

Co-Clusters in Sponsored Search

Co-Clustering in Sponsored Search

Applications:

- Keyword suggestion
 - Recommend to advertisers other relevant keywords
- Broad matching / market expansion
 - Include more advertisers to a query
- Isolate submarkets
 - Important for economists
 - Apply different advertising approaches
- Build taxonomies of advertisers / keywords

Clustering of the rows

- m points in Rⁿ
- Group them to k clusters
- Represent them by a matrix $A \in \mathbb{R}^{m \times n}$
 - A point corresponds to a row of A
- Clustering: Partitioning of the rows into k groups

Clustering of the columns

- n points in Rm
- Group them to k clusters
- Represent them by a matrix $A \in \mathbb{R}^{m \times n}$
 - A point corresponds to a column of A
- Clustering: Partitioning of the columns into k
 groups

_						
	3	0	6	8	9	7
\	2	3	4	12	8	10
	\1	2	3	10	9	8
	0	8	4	8	7	9
	2	4	3	11	9	10
	16	10	13	6	7	5
	10	8	9	2	3	7

Cost of clustering

3	0	6	8	9	7
2	3	4	12	8	10
1	2	3	10	9	8
0	8	4	8	7	9
2	4	3	11	9	10
16	10	13	6	7	5
10	8	9	2	3	7

Original data points A

1.6	3.4	4	9.8	8.4	8.8
1.6	3.4	4	9.8	8.4	8.8
1.6	3.4	4	9.8	8.4	8.8
1.6	3.4	4	9.8	8.4	8.8
1.6	3.4	4	9.8	8.4	8.8
13	9	11	4	5	6
13	9	11	4	5	6

Data representation A'

- In A' every point in A (row or column) is replaced by the corresponding representative (row or column)
- The quality of the clustering is measured by computing distances between the data in the cells of A and A'.
- k-means clustering: cost = $\sum_{i=1...n} \sum_{j=1...m} (A(i,j)-A'(i,j))^2$
- k-median clustering: cost = $\sum_{i=1...n} \sum_{j=1...m} |A(i,j)-A'(i,j)|$

Co-Clustering

- Co-Clustering: Cluster rows and columns of $A \in \mathbb{R}^{m \times n}$ simultaneously
- k row clusters, e column clusters
- Every cell in A is represented by a cell in A'
- •All cells in the same co-cluster are represented by the same value in the cells of A'

3	0	6	8	9	7
2	3	4	12	8	10
1	2	3	10	9	8
0	8	4	8	9	7
2	4	3	11	9	10
16	10	13	6	7	5
10	8	9	2	3	7

Original data A

3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
11	11	11	5	5	5
11	11	11	5	5	5

Co-cluster representation A'

Co-Clustering Objective Function

3	0	6	8	9	7
2	3	4	12	8	10
1	2	3	10	9	8
0	8	4	8	7	9
2	4	3	11	9	10
16	10	13	6	7	5
10	8	9	2	3	7

3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
11	11	11	5	5	5
11	11	11	5	5	5

- In A' every point in A (row or column) is replaced by the corresponding representative (row or column)
- The quality of the clustering is measured by computing distances between the data in the cells of A and A'.
- k-means Co-clustering: $cost = \sum_{i=1...n} \sum_{j=1...m} (A(i,j)-A'(i,j))^2$
- k-median Co-clustering: $cost = \sum_{i=1...n} \sum_{j=1...m} |A(i,j)-A'(i,j)|$

Some Background

- A.k.a.: biclustering, block clustering, ...
- Many objective functions in co-clustering
 - This is one of the easier
 - Others factor out row-column average (priors)
 - Others based on information theoretic ideas (e.g. KL divergence)
- A lot of existing work, but mostly heuristic
 - k-means style, alternate between rows/columns
 - Spectral techniques

Algorithm

1. Cluster rows of A

2. Cluster columns of A

3. Combine

Properties of the algorithm

Theorem 1. Algorithm with optimal row/column clusterings is 3-approximation to co-clustering optimum.

Theorem 2. For L_2 distance function, the algorithm with optimal row/column clusterings is a 2-approximation.

Algorithm--details

- Clustering of the n rows of A assigns every row to a cluster with cluster name {1,...,k}
 - $-R(i)=r_i$ with $1 \le r_i \le k$
- Clustering of the m columns of A assigns every column to a cluster with cluster name {1,..., e}
 - $-C(j)=c_j$ with $1 \le c_j \le \ell$
- $A'(i,j) = \{r_i,c_i\}$
- (i,j) is in the same co-cluster as (i',j') if
 A'(i,j)=A'(i',j')

From distance to points: Multidimensional scaling

Multi-Dimensional Scaling (MDS)

 So far we assumed that we know both data points X and distance matrix D between these points

 What if the original points X are not known but only distance matrix D is known?

Can we reconstruct X or some approximation of X?

Problem

Given distance matrix D between n points

Find a k-dimensional representation of every
 x_i point i

So that d(x_i,x_i) is as close as possible to D(i,j)

Why do we want to do that?

How can we do that? (Algorithm)

High-level view of the MDS algorithm

- Randomly initialize the positions of n points in a k-dimensional space
- Compute pairwise distances D' for this placement
- Compare D' to D
- Move points to better adjust their pairwise distances (make D' closer to D)
- Repeat until D' is close to D

The MDS algorithm

- Input: nxn distance matrix D
- Random n points in the k-dimensional space (x₁,...,x_n)
- stop = false
- while not stop
 - totalerror = 0.0
 - For every i,j compute
 - D'(i,j)=d(x_i,x_i)
 - error = (D(i,j)-D'(i,j))/D(i,j)
 - totalerror +=error
 - For every dimension m: grad_{im} = (x_{im}-x_{jm})/D'(i,j)*error
 - If totalerror small enough, stop = true
 - If(!stop)
 - For every point i and every dimension m: x_{im} = x_{im} rate*grad_{im}

Questions about MDS

- Running time of the MDS algorithm
 - O(n²I), where I is the number of iterations of the algorithm

 MDS does not guarantee that metric property is maintained in D'