#### Lecture outline

- Classification
- Decision-tree classification

#### What is classification?

Marital Defaulted Home Annual Tid Status Borrower Owner Income 125K Yes Single No Married 100K Nο No 3 Single 70K Nο No Married 4 Yes 120K No 5 Divorced 95K No Yes 6 Married 60K No No 220K Yes Divorced No 8 Nο Single 85K Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

75K

90K

No

Yes

Married

Single

Nο

No

10

#### What is classification?

Classification is the task of *learning a target function* f that maps attribute set x to one of the
 predefined class labels y

|     |               | Jinary categorical continuous class |                  |                       |
|-----|---------------|-------------------------------------|------------------|-----------------------|
|     | binary        | catego                              | contin           | class                 |
| Tid | Home<br>Owner | Marital<br>Status                   | Annual<br>Income | Defaulted<br>Borrower |
| 1   | Yes           | Single                              | 125K             | No                    |
| 2   | No            | Married                             | 100K             | No                    |
| 3   | No            | Single                              | 70K              | No                    |
| 4   | Yes           | Married                             | 120K             | No                    |
| 5   | No            | Divorced                            | 95K              | Yes                   |
| 6   | No            | Married                             | 60K              | No                    |
| 7   | Yes           | Divorced                            | 220K             | No                    |
| 8   | No            | Single                              | 85K              | Yes                   |
| 9   | No            | Married                             | 75K              | No                    |
| 10  | No            | Single                              | 90K              | Yes                   |

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

#### What is classification?



**Figure 4.2.** Classification as the task of mapping an input attribute set x into its class label y.

#### Why classification?

- The target function f is known as a classification model
- Descriptive modeling: Explanatory tool to distinguish between objects of different classes (e.g., description of who can pay back his loan)
- Predictive modeling: Predict a class of a previously unseen record

#### Typical applications

credit approval

target marketing

medical diagnosis

treatment effectiveness analysis

#### General approach to classification

Training set consists of records with known class labels

Training set is used to build a classification model

 The classification model is applied to the test set that consists of records with unknown labels

#### General approach to classification



#### Evaluation of classification models

 Counts of test records that are correctly (or incorrectly) predicted by the classification model

Confusion matrix

| Class |           | Class = 1              | Class = 0       |
|-------|-----------|------------------------|-----------------|
| na    | Class = 1 | f <sub>11</sub>        | f <sub>10</sub> |
| Act   | Class = 0 | <b>f</b> <sub>01</sub> | f <sub>00</sub> |

Accuracy = 
$$\frac{\text{\# correct predictions}}{\text{total \# of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate = 
$$\frac{\text{# wrong predictions}}{\text{total # of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

## Supervised vs. Unsupervised Learning

- Supervised learning (classification)
  - Supervision: The training data (observations, measurements, etc.) are
     accompanied by labels indicating the class of the observations
  - New data is classified based on the training set
- Unsupervised learning (clustering)
  - The class labels of training data is unknown
  - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

#### **Decision Trees**

- Decision tree
  - A flow-chart-like tree structure
  - Internal node denotes a test on an attribute
  - Branch represents an outcome of the test
  - Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
  - Tree construction
    - At start, all the training examples are at the root
    - Partition examples recursively based on selected attributes
  - Tree pruning
    - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
  - Test the attribute values of the sample against the decision tree

### **Training Dataset**

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

### Output: A Decision Tree for "buys\_computer"



#### Constructing decision trees

 Exponentially many decision trees can be constructed from a given set of attributes

Finding the most accurate tree is NP-hard

- In practice: greedy algorithms
  - Grow a decision tree by making a series of *locally optimum decisions on which attributes to use* for
     partitioning the data

## Constructing decision trees: the Hunt's algorithm

- X<sub>t</sub>: the set of training records for node t
- y={y<sub>1</sub>,...,y<sub>c</sub>}: class labels
- Step 1: If all records in X<sub>t</sub> belong to the same class y<sub>t</sub>,
   then t is a leaf node labeled as y<sub>t</sub>
- Step 2: If X<sub>t</sub> contains records that belong to more than one class,
  - select attribute test condition to partition the records into smaller subsets
  - Create a child node for each outcome of test condition
  - Apply algorithm recursively for each child

# Decision-tree construction (Example)

|     | hinary        | catego            | rical contin     | jous<br>class         |
|-----|---------------|-------------------|------------------|-----------------------|
| Tid | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
| 1   | Yes           | Single            | 125K             | No                    |
| 2   | No            | Married           | 100K             | No                    |
| 3   | No            | Single            | 70K              | No                    |
| 4   | Yes           | Married           | 120K             | No                    |
| 5   | No            | Divorced          | 95K              | Yes                   |
| 6   | No            | Married           | 60K              | No                    |
| 7   | Yes           | Divorced          | 220K             | No                    |
| 8   | No            | Single            | 85K              | Yes                   |
| 9   | No            | Married           | 75K              | No                    |
| 10  | No            | Single            | 90K              | Yes                   |

Figure 4.6. Training set for predicting borrowers who will default on loan payments.



Figure 4.7. Hunt's algorithm for inducing decision trees.

#### Design issues

How should the training records be split?

How should the splitting procedure stop?

Binary attributes



#### Nominal attributes



Ordinal attributes



Figure 4.10. Different ways of grouping ordinal attribute values.

Continuous attributes



Figure 4.11. Test condition for continuous attributes.

#### Selecting the best split

- p(i|t): fraction of records belonging to class i
- Best split is selected based on the degree of impurity of the child nodes
  - Class distribution (0,1) has high purity
  - Class distribution (0.5,0.5) has the smallest purity (highest impurity)

Intuition: high purity → small value of impurity measures → better split

#### Selecting the best split



## Selecting the best split: Impurity measures

 p(i|t): fraction of records associated with node t belonging to class i

$$Entropy(t) = -\sum_{i=1}^{c} p(i \mid t) \log p(i \mid t)$$

Gini
$$(t) = 1 - \sum_{i=1}^{c} [p(i | t)]^2$$

Classification error(
$$t$$
) =  $1 - \max_{i} [p(i | t)]$ 

#### Range of impurity measures



#### Impurity measures

- In general the different impurity measures are consistent
- Gain of a test condition: compare the impurity of the parent node with the impurity of the child nodes

$$\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

- Maximizing the gain == minimizing the weighted average impurity measure of children nodes
- If I() = Entropy(), then  $\Delta_{info}$  is called information gain

#### Computing gain: example



### Is minimizing impurity/ maximizing △ enough?



### Is minimizing impurity/ maximizing △ enough?

 Impurity measures favor attributes with large number of values

- A test condition with large number of outcomes may not be desirable
  - # of records in each partition is too small to make predictions

#### Gain ratio

• Gain ratio =  $\Delta_{info}$ /Splitinfo

- SplitInfo =  $-\sum_{i=1...k} p(v_i) \log(p(v_i))$
- k: total number of splits
- If each attribute has the same number of records, SplitInfo = logk
- Large number of splits → large SplitInfo → small gain ratio

# Constructing decision-trees (pseudocode)

```
GenDecTree(Sample S, Features F)
     If stopping_condition(S,F) = true then
1.
          leaf = createNode()
     a.
         leaf.label= Classify(S)
     b.
        return leaf
     C.
2.
     root = createNode()
     root.test_condition = findBestSplit(S,F)
3.
     V = {v | v a possible outcome of root.test condition}
4.
     for each value veV:
5.
          S_v := \{s \mid root.test\_condition(s) = v \text{ and } s \in S\};
          child = TreeGrowth(S<sub>v</sub>,F);
     b.
         Add child as a descent of root and label the edge (root -> child) as v
```

return root

#### Stopping criteria for tree induction

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

Early termination

#### Advantages of decision trees

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

#### Example: C4.5 algorithm

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.

You can download the software from:

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

## Practical problems with classification

- Underfitting and overfitting
- Missing values
- Cost of classification

#### Overfitting and underfitting



Underfitting: when model is too simple, both training and test errors are large

#### Overfitting due to noise



Decision boundary is distorted by noise point

### Underfitting due to insufficient samples



Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

#### Overfitting: course of action

 Overfitting results lead to decision trees that are more complex than necessary

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

#### Methods for estimating the error

- Re-substitution errors: error on training ( $\Sigma$  e(t))
- Generalization errors: error on testing ( $\Sigma$  e'(t))
- Methods for estimating generalization errors:
  - Optimistic approach: e'(t) = e(t)
  - Pessimistic approach:
    - For each leaf node: e'(t) = (e(t)+0.5)
    - Total errors:  $e'(T) = e(T) + N \times 0.5$  (N: number of leaf nodes)
    - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
       Training error = 10/1000 = 1%

       Generalization error = (10 + 30×0.5)/1000 = 2.5%
  - Reduced error pruning (REP):
    - uses validation data set to estimate generalization error

## Addressing overfitting: Occam's razor

 Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

 For complex models, there is a greater chance that it was fitted accidentally by errors in data

 Therefore, one should include model complexity when evaluating a model

# Addressing overfitting: postprunning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottomup fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

# Addressing overfitting: preprunning

- Stop the algorithm before it becomes a fullygrown tree
- Typical stopping conditions for a node:
  - Stop if all instances belong to the same class
  - Stop if all the attribute values are the same
- More restrictive conditions:
  - Stop if number of instances is less than some user-specified threshold
  - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

#### Decision boundary for decision trees



- Border line between two neighboring regions of different classes is known as **decision boundary**
- **Decision boundary in decision trees** is parallel to axes because test condition involves a single attribute at-a-time

#### **Oblique Decision Trees**



Not all datasets can be partitioned optimally using test conditions involving single attributes!

#### **Oblique Decision Trees**



#### **Circular points:**

 $0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$ 

#### **Triangular points:**

$$sqrt(x_1^2+x_2^2) > 1$$
 or

$$sqrt(x_1^2+x_2^2) < 0.5$$