More on Rankings

Query-independent LAR

Have an a-priori ordering of the web pages

Q: Set of pages that contain the keywords in the

query q
Present the pages in Q ordered according to
order 1t

What are the advantages of such an approach?

InDegree algorithm

* Rank pages according to in-degree
—w; = | B(i)|

3. Blue Page
. Purple Page
. Green Page

B /EW\BE 1. Red Page

1
\"
2
il
o N

PageRank algorithm [BP98]

Good authorities should be
pointed by good authorities

Random walk on the web graph
— pick a page at random

— with probability 1- o jump to a
random page

— with probability a follow a random
outgoing link
Rank according to the stationary
distribution

PR(p) = aZ‘PR((q)‘) a)l

1.
2.

4.
D.

Red Page
Purple Page

Blue Page
Green Page

Markov chains

A Markov chain describes a discrete time stochastic process
over a set of states

S={s;, s, .S}
according to a transition probability matrix
P= {Pij}

— P, = probability of moving to state j when at state |
* 2;P; =1 (stochastic matrix)

* Memorylessness property: The next state of the chain
depends only at the current state and not on the past of the
process (first order MC)

— higher order MCs are also possible

Random walks

 Random walks on graphs correspond to
Markov Chains

— The set of states S is the set of nodes of the graph
G

— The is the probability
that we follow an edge from one node to another

An example

01100 H
A:

Looos \>\\
"0 12 12 0 0]

0 0 0 0 1
P-|0 1 0 0 O Vs v,
1/3 13 1/3 0 0

1/2 0 0 0 1/2

State probability vector

* The vector ' =(qg%,q%, ... ,g,) that stores the
probability of being at state i at time t

— g". = the probability of starting from state i

qt - qt-l P

An example

0 12 12 0
0 0 0 O
P=l0 1 0 O
0

- / H\
1/3 1/3 1/3 \ \
/2 0 0 1/2 0]

=1/3q%+1/2 g%
qt+12 - 1/2 + qt3+ 1/3 qt4

o O O —~ O

Vs
qt+13 = 1/2 + 1/3 qt4
qt+14 - 1/2 th

t+1 — At
9 5s=q,

Stationary distribution

A stationary distribution for a MC with transition matrix P, is a
probability distribution 1, such that t = P

A MC has a unique stationary distribution if
— itisirreducible
* the underlying graph is strongly connected
— itis aperiodic
* for random walks, the underlying graph is not bipartite

The probability 1t is the fraction of times that we visited state
last — 0O

The stationary distribution is an eigenvector of matrix P

— the principal left eigenvector of P — stochastic matrices have maximum
eigenvalue 1

Computing the stationary distribution

* The Power Method
— Initialize to some distribution g°
— Iteratively compute g' = q*'P
— After enough iterations gt= 1t
— Power method because it computes gt = q°Pt

e Rate of convergence
— determined by A,

The PageRank random walk

 Vanilla random walk

— make the adjacency matrix stochastic and run a
random walk

T il N
]

0 0 N
0O 0 0 0 1 -\ \
P=0 1 0 0 O
1/3 1/3 1/3 0 O /
o oo |=|—7]

The PageRank random walk

 What about sink nodes?

— what happens when the random walk moves to a
node without any outgoing inks?

0 12 12 0
0 0 0 0
P=l0 1 0 O
1/3 1/3 13 0
12 0 0 12

gy
/
N\

The PageRank random walk

* Replace these row vectors with a vector v

— typically, the uniform vector

0 12 12 0 0

/5 15 1/5 15 15 /\\
P-l0 1 0 0 O

/3 13 13 0 0 \ /

12 0 0 12 0
e

The PageRank random walk

* How do we guarantee irreducibility?

— add a random jump to vector v with prob @
« typically, to a uniform vector

"0 12 12 0 0] 1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
P'=¢/ 0 1 0 0 O |+(-a)1/5 1/5 1/5 1/5 1/5
1/3 1/3 1/3 0 O 1/5 1/5 1/5 1/5 1/5
12 0 0 0 1/2] 1/5 1/5 1/5 1/5 1/5

P” = aP’ + (1-a)uv’, where u is the vector of all 1s

Effects of random jump

Guarantees irreducibility
Motivated by the concept of random surfer
Offers additional flexibility

— personalization
— anti-spam
Controls the rate of convergence

— the second eigenvalue of matrix P” is @

A PageRank algorithm

Performing vanilla power method is now too
expensive — the matrix is not sparse

q°=v Efficient computation of y = (P”’) x
t=1
repeat y=aP" x
q=FP")'q” B=x], =¥,
s-li-a| | | yoyepm
t=t+1
until 6 <€

Random walks on undirected graphs

* |In the stationary distribution of a random walk
on an undirected graph, the probability of
being at node i is proportional to the
(weighted) degree of the vertex

 Random walks on undirected graphs are not
“interesting”

Research on PageRank

* Specialized PageRank

— personalization [BP98]

* instead of picking a node uniformly at random favor specific nodes that
are related to the user

— topic sensitive PageRank [HO2]
* compute many PageRank vectors, one for each topic
* estimate relevance of query with each topic
e produce final PageRank as a weighted combination

* Updating PageRank [Chien et al 2002]

e Fast computation of PageRank
— numerical analysis tricks
— node aggregation techniques
— dealing with the “Web frontier”

Topic-sensitive pagerank

* HITS-based scores are very inefficient to compute
 PageRank scores are independent of the queries

* Can we bias PageRank rankings to take into
account query keywords?

Topic-sensitive PageRank

Topic-sensitive PageRank

Conventional PageRank computation:
r(t+1)(v)=zuEN(v)r(t)(u)/ d(v)

N(v): neighbors of v
d(v): degree of v
r = Mxr

M’ = (1-a)P’+ a[1/n]

r=(1-o)P’r+ a[l/n]
p=[1/n],,

r=(1-o)P’r+ ap

nxn

Topic-sensitive PageRank

r= (1-a)P’r+ ap

Conventional PageRank: p is a uniform vector with values
1/n

Topic-sensitive PageRank uses a non-uniform
personalization vector p

Not simply a post-processing step of the PageRank
computation

Personalization vector p introduces bias in all iterations of
the iterative computation of the PageRank vector

Personalization vector

* In the random-walk model, the
personalization vector represents the addition
of a set of transition edges, where the
probability of an artificial edge (u,v) is ap,

* Given a graph the result of the PageRank
computation only depends on acand p :
PR(o,p)

Topic-sensitive PageRank: Overall
approach

* Preprocessing
— Fix a set of k topics

— For each topic ¢; compute the PageRank scores of
page u wrt to the j-th topic: r(u,j)

* Query-time processing:

— For query g compute the total score of page u wrt
g as score(u,q) = 2;_; , Pr(c;|q) r(u,j)

Topic-sensitive PageRank:
Preprocessing

* Create k different biased PageRank vectors
using some pre-defined set of k categories

(€q)eeesCy)
* T;: set of URLs in the j-th category

* Use non-uniform personalization vector p=w;
such that:

W (V)=+1T

Topic-sensitive PageRank: Query-time
processing

* D;: class term vectors consisting of all the
terms appearing in the k pre-selected
categories

Pr(c;)Pr(q|c;)
Pr(q)

Pr(Cj 1q) = OCPr(Cj)HPr(qi |Cj)

* How can we compute P(c;)?
* How can we compute Pr(q;|c;)?

 Comparing results of Link Analysis Ranking
algorithms

 Comparing and aggregating rankings

Comparing LAR vectors

1 0.8 0503 0]
w,=[09 1 0.7 0.6 0.8]

* How close are the LAR vectors w,, w,?

Distance between LAR vectors

e Geometric distance: how close are the
numerical weights of vectors w,, w,?

d, (w,,w,) Z‘W1[|] Wz[']‘
O 0O 000

w;=[1.0 08 0.5 0.3 0.0]
w,=[09 1.0 0.7 0.6 0.8
d,(w;,w,) = 0.1+0.2+0.2+0.3+0.8 = 1.6

Distance between LAR vectors

e Rank distance: how close are the ordinal
rankings induced by the vectors w,, w,?

— Kendal’s T distance

)= pairs ranked in a different order
2

d (w,,w — .
total number of distinct pairs

Outline

— Computing aggregate scores
— Computing aggregate rankings - voting

Rank Aggregation

* Given a set of rankings R;,R,,...,R of a set of
objects X, X,,...,X,, produce a single ranking R
that is in agreement with the existing rankings

Examples

* Voting

— rankings R;,R,,...,R are the voters, the objects
X, X,,...,X_ are the candidates.

Examples

Combining multiple scoring functions

—rankings R,R,,...,R are the scoring functions, the
objects X,,X,,...,X, are data items.

 Combine the PageRank scores with term-weighting
scores

e Combine scores for multimedia items
— color, shape, texture

 Combine scores for database tuples

— find the best hotel according to price and location

Examples

 Combining multiple sources

— rankings R,,R,,...,R are the sources, the objects
X, X,,...,X, are data items.
* meta-search engines for the Web
e distributed databases
* P2P sources

Variants of the problem

 Combining scores

— we know the scores assigned to objects by each
ranking, and we want to compute a single score

 Combining ordinal rankings

— the scores are not known, only the ordering is
known

— the scores are known but we do not know how, or
do not want to combine them

e e.g. price and star rating

Combining scores

* Each object X, has m scores
(Fig,Fipyeees i)

* The score of object X. is
computed using an

f(r.,rip,e i)

R, | R, | R,
X, | 1]03]0.2
X, 0.8(0.8] 0
X, |0.5[0.7]0.6
X, 10.3]0.2]0.8
X. |0.1]0.1]0.1

Combining scores

* Each object X, has m scores

(r|1'r|2' °) |m) Rl
* The score of object X. is X, | 1
computed using an LY
f(rll’rIZ’ 'rlm) i .
X; 0.5
f(r|1'r|2' *7 |m) = mln{rll’rIZ’ 'rlm}
X, 0.3

X5 0-1

Combining scores

* Each object X, has m scores
(r|1'r|2') |m)
* The score of object X. is

computed using an
f(rll’rIZ’ 'r

f(r|1'r|2') |m) = max{rll’rIZ’ 'rlm}

R1 RZ R3
X, | 1[03]0.2
X, 0.8(0.8] 0
X, |0.5[0.7]0.6
X, 10.3]0.2]0.8
X |0.1/0.1]0.1

* Each object X, has m scores

(rll’ r|2'

i)

Combining scores

* The score of object X. is
computed using an

— f(r.,r.

i22°°°2 |m

f(rll’ r|2' °/ r

ro) =rg+ro+.o+r

R, | R, | R,
X, | 1]03]0.2
X, 0.8(0.8] 0
X, |0.5[0.7]0.6
X, 10.3]0.2]0.8
X. |0.1]0.1]0.1

Top-k

e Given a set of n objects and m scoring lists sorted in
decreasing order, find the objects according to
a scoring function f

:aset T of k objects such that f(r;y,...,r;,,) <
f(r.,,...,r..,) for every object X.in T and every object X;

notinT

* Assumption: The function f is monotone
— f(ry,...,rp,) < f(r,...,r)) ifr,<r/ forall i
* Objective: Compute top-k with the minimum cost

Cost function

We want to minimize the number of accesses to the
scoring lists

Sorted accesses: sequentially access the objects in
the order in which they appear in a list

— cost C,

Random accesses: obtain the cost value for a specific
object in a list

— cost C,

If s sorted accesses and r random accesses minimize
sC,+rC

Example

R R, Rs
X, |1 0.8 X, 0.8
0.8 X5 0.7 X; 10.6
X5 0.5 X, 10.3 X; 10.2
X, 10.3 X, 0.2 X: 0.1
X: |0.1 X: |0.1 0
 Compute top-2 for the sum aggregate function

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are < objects that have been seen in all

lists
R R Rs
X, | 1 0.8 X, |0.8
0.8 X, | 0.7 X, |0.6
X; |0.5 X, |0.3 X, |0.2
X, |0.3 X, |0.2 X. | 0.1
Xs |0.1 X: |0.1 0

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are < objects that have been seen in all

lists
R1 RZ R3
0.8 X, | 0.7 X, 0.6
X, | 0.5 X, 0.3 X, |0.2
X, |0.3 X, |0.2 X. |0.1
Xs |0.1 Xs |0.1 0

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are < objects that have been seen in all
lists

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are < objects that have been seen in all
lists

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are < objects that have been seen in all
lists

Fagin’s Algorithm

2. Perform random accesses to obtain the
scores of all seen objects

3. Compute score for all objects and find the
top-k

Fagin’s Algorithm

X, [1.8
1.6
X, [1.5
X, [1.3

Fagin’s Algorithm

* X; cannot be in the top-2 because of the
monotonicity property

- f(Xg) < (X)) = f(X;)

X, [1.8
1.6
X, [1.5
X, [1.3

Fagin’s Algorithm

* The algorithm is cost optimal under some
probabilistic assumptions for a restricted class
of aggregate functions

Threshold algorithm

1. Access the elements sequentially

R R Rs
X, | 1 0.8 X, 0.8
0.8 X, 0.7 X, |0.6
X, |0.5 X, 0.3 X, |0.2
X, 0.3 X, |0.2 X. |0.1
X. |0.1 X. |0.1 0

1. At each sequential access

d.

Threshold algorithm

Set the threshold t to be the aggregate of the

scores seen in this access

2.6

Rl RZ
0.8 X, | 0.7
X; | 0.5 X, |0.3
X, |0.3 X, |0.2
X: |0.1 X: |0.1

R3
X, |0.6
X, |0.2
X: |0.1
0

Threshold algorithm

1. At each sequential access

b. Do random accesses and compute the score of
the objects seen

Threshold algorithm

1. At each sequential access

c. Maintain a list of top-k objects seen so far

Threshold algorithm

1. At each sequential access

d. When the scores of the top-k are greater or
equal to the threshold, stop

Threshold algorithm

1. At each sequential access

d. When the scores of the top-k are greater or
equal to the threshold, stop

Threshold algorithm

2. Return the top-k seen so far

Threshold algorithm

* From the monotonicity property for any
object not seen, the score of the object is less

than the threshold
— (X)) <t < f(X,)

* The algorithm is instance cost-optimal
— within a constant factor of the best algorithm on
any database

Combining rankings

In many cases the scores are not known

— e.g. meta-search engines — scores are proprietary
information

... or we do not know how they were obtained

— one search engine returns score 10, the other 100. What
does this mean?

... or the scores are incompatible

— apples and oranges: does it make sense to combine price
with distance?

In this cases we can only work with the rankings

The problem

* Input: a set of rankings R;,R,,...,R of the
objects X, X,,...,X,,. Each ranking R. is a
of the objects

— for every pair X, X, either X;is ranked above X; or X,
is ranked above X

* QOutput: A total ordering R that
rankings R;,R,,...,R

Voting theory

* A voting system is a rank aggregation
mechanism

* Long history and literature

— criteria and axioms for good voting systems

What is a good voting system?

e The

— if object A defeats every other object in a pairwise
majority vote, then A should be ranked first

— if the objects in a set X defeat in pairwise comparisons the
objects in the set Y then the objects in X should be ranked
above those in Y

* Not all voting systems satisfy the Condorcet
criterion!

Pairwise majority comparisons

* Unfortunately the Condorcet winner does not
always exist

— irrational behavior of groups

Vi | Vo | Vs

1 A B C

2 B | C | A

3|1 C|A | B
A>B B>C C>A

Pairwise majority comparisons

Resolve cycles by imposing an agenda

Vi | Vo | Vs

R W|IN|~
m O O W >
O|m™| > mMm|O
O\ O|W™|X> | m

Pairwise majority comparisons

Resolve cycles by imposing an agenda

Vi | V5 |V, A B

\/

A

N D WIN|-
m| OO |T| >
O|W| > m|C
O\ O|W|X>|m

Pairwise majority comparisons

Resolve cycles by imposing an agenda

Vi | Vo | Vs A

B
\/

A

\ /

E

N D WIN|-
m| OO |@| >
O|@™| > m| O
OlO|@| > m

Pairwise majority comparisons

Resolve cycles by imposing an agenda

Ve |V, | Vs A B

1 |A|D]|E \ /

2 | B| E|A A E
3|Cc|A|B \E/ 5
4| D|B|C \ /
5| E|C|D D

Pairwise majority comparisons

* Resolve cycles by imposing an agenda
Vi | V5 |V, A B
1| A|D|E \ /
2 | B|E|A A\ /E
3| C|A|B c D
4 | D | B | C \/
5| E|C|D D C
\/

e Cisthe winner

Pairwise majority comparisons

* Resolve cycles by imposing an agenda
Vi | V5 |V, A B
1| A|D|E \ /
2 | B| E|A A\ /E
3| CJ| A | B £ b
4 | D | B | C \/
5|/ E|C|D D C
\/

e But everybody prefers A or B over C

Pairwise majority comparisons

* The voting system is not

— there exists another ordering that everybody
prefers

* Also, it is sensitive to the order of voting

Plurality vote

* Elect first whoever has more 1st position votes

voters 10 8 7
1 A C B
2 B A C
3 C B A
* Does not find a Condorcet winner (C in this

case)

Plurality with runoff

* |f no-one gets more than 50% of the 1st
position votes, take the majority winner of the
first two

voters | 10 8 7)
1 A C B B
2 B A C A
3 C B A C

first round: A10,B9,C8
second round: A 18,B9
winner: A

Plurality with runoff

* |f no-one gets more than 50% of the 1st
position votes, take the majority winner of the

change the order of
A and B in the last
column

first two
voters | 10 8 7)
1 A C B A
2 B A C B
3 C B A C

first round: A12,B7,C8
second round: A 12, C15

winner: Cl!

Positive Association axiom

* Plurality with runoff violates the

. positive changes in
preferences for an object should not cause the
ranking of the object to decrease

Borda Count

* For each ranking, assign to object X, number
of points equal to the number of objects it

defeats
— first position gets n-1 points, second n-2, ..., last 0
points
* The total weight of X is the number of points it
accumulates from all rankings

Borda Count

voters))
A:3*3+2*%0+2*%1=11p
1 (3p) B B:3*2+2%3+2%0=12p
C:3*1+2*2+2*3=13p
2 (2p) > D:3*0+2*1+2*2=6p
3 (1p) D A
4 (Op) A B

* Does not always produce Condorcet winner

BC

Borda Count

voters P
1 (2p) B
2 (1p)

3 (0Op) A

e Assume that D is removed from the vote

A:3*%2 +2*%0+2%1=7p
B:3*1+2%2+2*%0="7p
C:3*0+2*1+2*2=6p

BC

* Changing the position of D changes the order

of the other elements!

Independence of Irrelevant Alternatives

* The relative ranking of X and Y should not
depend on a third object Z

— heavily debated axiom

Borda Count

 The Borda Count of an an object X is the
aggregate number of pairwise comparisons
that the object X wins
— follows from the fact that in one ranking X wins all

the pairwise comparisons with objects that are
under X in the ranking

Voting Theory

* |s there a voting system that does not suffer
from the previous shortcomings?

Arrow’s Impossibility Theorem

There is no voting system that satisfies the following axioms

— Universality
e allinputs are possible
— Completeness and Transitivity
* for each input we produce an answer and it is meaningful
— Positive Assosiation
* Promotion of a certain option cannot lead to a worse ranking of this option.

— Independence of Irrelevant Alternatives

* Changes in individuals' rankings of irrelevant alternatives (ones outside a certain
subset) should have no impact on the societal ranking of the subset.

— Non-imposition

* Every possible societal preference order should be achievable by some set of
individual preference orders

— Non-dictatoriship

KENNETH J. ARROW Social Choice and Individual Values
(1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

Kemeny distance K(R,,R,): The number of pairs of nodes that
are ranked in a different order (Kendall-tau)

— number of bubble-sort swaps required to transform one ranking into
another

Kemeny optimal aggregation minimizes

K(R,Rl,...,Rm)ziK(R,Ri)
i=1

Kemeny optimal aggregation satisfies the Condorcet criterion
and the extended Condorcet criterion

— maximum likelihood interpretation: produces the ranking that is most
likely to have generated the observed rankings

...but it is NP-hard to compute

— easy 2-approximation by obtaining the best of the input rankings, but
it is not “interesting”

Locally Kemeny optimal aggregation

* Aranking Ris if there
IS no bubble-sort swap that produces a
ranking R’ such that K(R",Rq,.--,R,)<

K(R"Ry,...,R)

* Locally Kemeny optimal is not necessarily
Kemeny optimal

* Definitions apply for the case of partial lists
also

Locally Kemeny optimal aggregation

* Locally Kemeny optimal aggregation can be
computed in polynomial time

— At the i-th iteration insert the i-th element x in the bottom
of the list, and bubble it up until there is an element y such
that the majority places y over x

e Locally Kemeny optimal aggregation satisfies the
Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNSO01]

e Start with an aggregated ranking and make it
into a locally Kemeny optimal aggregation

* How do we select the initial aggregation?
— Use another aggregation method

— Create a Markov Chain where you move from an
object X, to another object Y that is ranked higher
by the majority

Spearman’s footrule distance

 Spearman’s footrule distance: The difference
between the ranks R(i) and R’(i) assighed to
object |

n

FR,R')= > R()-R'(0)
i=1
* Relation between Spearman’s footrule and
Kemeny distance

KR,R')<F(R,R)<2K({R,R")

Spearman’s footrule aggregation

* Find the ranking R, that minimizes
FR.R,,..,R,)=> FR,R;)
i=1

 The optimal Spearman’s footrule aggregation can be
computed in polynomial time

— |t also gives a 2-approximation to the Kemeny optimal
aggregation

* If the median ranks of the objects are unique then
this ordering is optimal

Example

B
A

B

B

A

2

T 4 n M

T

<o O

The MedRank algorithm

* Access the rankings sequentially

R, R, R, R
1 |A 1 |B 1 |B 1
2 |B 2 |A 2 |C 2
3 |C 3 3 |A 3
4 4 |C 4 4

The MedRank algorithm

* Access the rankings sequentially

— when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

R, R, R, R
B

The MedRank algorithm

* Access the rankings sequentially

— when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

D W N~

The MedRank algorithm

* Access the rankings sequentially

— when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

Al >l m| ”

D W N~

The MedRank algorithm

* Access the rankings sequentially

— when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

D W N~
olo| | m|”

The Spearman’s rank correlation

e Spearman’s rank correlation

n

SRR)=> R -R'(D))

i=1

 Computing the optimal rank aggregation with
respect to Spearman’s rank correlation is the
same as computing Borda Count

— Computable in polynomial time

Extensions and Applications

Rank distance measures between partial
orderings and top-k lists

Similarity search
Ranked Join Indices
Analysis of Link Analysis Ranking algorithms

Connections with machine learning

References

A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory
and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005

Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and
aggregating rankings with ties , PODS 2004

M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems",
Proceedings of IJCAI, 2005

Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J.
Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc.
2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.

Alex Tabbarok Lecture Notes

Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank
aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.

Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the
Web. 10th International World Wide Web Conference, May 2001.

C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected
as Web Search Area highlight, 2001.

	More on Rankings
	Query-independent LAR
	InDegree algorithm
	PageRank algorithm [BP98]
	Markov chains
	Random walks
	An example
	State probability vector
	An example
	Stationary distribution
	Computing the stationary distribution
	The PageRank random walk
	The PageRank random walk
	The PageRank random walk
	The PageRank random walk
	Effects of random jump
	A PageRank algorithm
	Random walks on undirected graphs
	Research on PageRank
	Topic-sensitive pagerank
	Topic-sensitive PageRank
	Topic-sensitive PageRank
	Personalization vector
	Topic-sensitive PageRank: Overall approach
	Topic-sensitive PageRank: Preprocessing
	Topic-sensitive PageRank: Query-time processing
	Slide Number 27
	Comparing LAR vectors
	Distance between LAR vectors
	Distance between LAR vectors
	Outline
	Rank Aggregation
	Examples
	Examples
	Examples
	Variants of the problem
	Combining scores
	Combining scores
	Combining scores
	Combining scores
	Top-k
	Cost function
	Example
	Fagin’s Algorithm
	Fagin’s Algorithm
	Fagin’s Algorithm
	Fagin’s Algorithm
	Fagin’s Algorithm
	Fagin’s Algorithm
	Fagin’s Algorithm
	Fagin’s Algorithm
	Fagin’s Algorithm
	Threshold algorithm
	Threshold algorithm
	Threshold algorithm
	Threshold algorithm
	Threshold algorithm
	Threshold algorithm
	Threshold algorithm
	Threshold algorithm
	Combining rankings
	The problem
	Voting theory
	What is a good voting system?
	Pairwise majority comparisons
	Pairwise majority comparisons
	Pairwise majority comparisons
	Pairwise majority comparisons
	Pairwise majority comparisons
	Pairwise majority comparisons
	Pairwise majority comparisons
	Pairwise majority comparisons
	Plurality vote
	Plurality with runoff
	Plurality with runoff
	Positive Association axiom
	Borda Count
	Borda Count
	Borda Count
	Independence of Irrelevant Alternatives
	Borda Count
	Voting Theory
	Arrow’s Impossibility Theorem
	Kemeny Optimal Aggregation
	Locally Kemeny optimal aggregation
	Locally Kemeny optimal aggregation
	Rank Aggregation algorithm [DKNS01]
	Spearman’s footrule distance
	Spearman’s footrule aggregation
	Example
	The MedRank algorithm
	The MedRank algorithm
	The MedRank algorithm
	The MedRank algorithm
	The MedRank algorithm
	The Spearman’s rank correlation
	Extensions and Applications
	References

