Graph Clustering



Why graph clustering is useful?

* Distance matrices are graphs = as useful as
any other clustering

e |dentification of communities in social
networks

 Webpage clustering for better data
management of web data



Outline

Min s-t cut problem
Min cut problem
Multiway cut
Minimum k-cut

Other normalized cuts and spectral graph
partitionings



Min s-t cut

Weighted graph G(V,E)

An s-t cut C=(S,T) of a graph G =(V, E) is a cut
partition of Vinto S and T such that s€S and teT

Cost of a cut: Cost(C) = 2., ) ues, v er W(E)

Problem: Given G, s and t find the minimum cost
s-t cut



Max flow problem

 Flow network

— Abstraction for material flowing through the
edges

— G = (V,E) directed graph with no parallel edges
— Two distinguished nodes: s = source, t= sink
— c(e) = capacity of edge e



Cuts

e An s-t cutis a partition (S,T) of V with s€S and
teT

* capacity of a cut (S,T) is cap(S,T) =Z_ . ,sscle)

* Find s-t cut with the minimum capacity: this
problem can be solved optimally in
polynomial time by using flow techniques



Flows

e An s-t flow is a function that satisfies
— For each e€E 0<f(e) <c(e) [capacity]

— For each veV-{s,t}: 2. . fle)=2__ .. .¢.f(e)
[conservation]
* The value of a flow fis: v(f) = Z_ ., .. f(e)



Max flow problem

* Find s-t flow of maximum value



Flows and cuts

* Flow value lemma: Let f be any flow and let
(S,T) be any s-t cut. Then, the net flow sent
across the cut is equal to the amount leaving s

e outof S f(E) ze into S f(E) = V(f)



Flows and cuts

* Weak duality: Let f be any flow and let (S,T)
be any s-t cut. Then the value of the flow is at
most the capacity of the cut defined by (S,T):

v(f) <cap(S,T)



Certificate of optimality

e Letf be any flow and let (S,T) be any cut. If v(f)
= cap(S,T) then f is a max flow and (S,T) is a

min cut.

* The min-cut max-flow problems can be solved
optimally in polynomial time!



Setting

Connected, undirected graph G=(V,E)
Assignment of weights to edges: w: E2>R*

Cut: Partition of V into two sets: V’, V-V’. The set of edges
with one end point in V and the other in V’ define the cut

The removal of the cut disconnects G

Cost of a cut: sum of the weights of the edges that have
one of their end point in V' and the other in V-V’



Min cut problem

* Can we solve the min-cut problem using an
algorithm for s-t cut?



Randomized min-cut algorithm

Repeat : pick an edge uniformly at random and merge the
two vertices at its end-points

— |If as a result there are several edges between some pairs of
(newly-formed) vertices retain them all

— Edges between vertices that are merged are removed (no self-
loops)

Until only two vertices remain

The set of edges between these two verticesis a cutin G
and is output as a candidate min-cut



Example of contraction

)



Observations on the algorithm

* Every cut in the graph at any intermediate
stage is a cut in the original graph



Analysis of the algorithm

C the min-cut of size k 2 G has at least kn/2 edges

— Why?
E;: the event of not picking an edge of C at the i-th step for 1<i <n-2
Step 1:

— Probability that the edge randomly chosen is in C is at most 2k/(kn)=2/n = Pr(E,) 2 1-2/n
Step 2:

— If E; occurs, then there are at least k(n-1)/2 edges remaining

— The probability of picking one from C is at most 2/(n-1) = Pr(E,|E,) =1 -2/(n-1)
Step i:

— Number of remaining vertices: n-i+1

— Number of remaining edges: k(n-i+1)/2 (since we never picked an edge from the cut)

— Pr(Ei|N., ., E) 21 -2/(n-i+1)

— Probability that no edge in C is ever picked: Pr(M._, ., E)2MN._, . ,(1-2/(n-i+1))=2/(n?n)
The probability of discovering a particular min-cut is larger than 2/n?

Repeat the above algorithm n%/2 times. The probability that a min-cut is not found
is (1-2/n2)"2/2< 1 /e



Multiway cut (analogue of s-t cut)

* Problem: Given a set of terminals S ={s,,...,S,.}
subset of V, a multiway cut is a set of edges
whose removal disconnects the terminals
from each other. The multiway cut problem
asks for the minimum weight such set.

 The multiway cut problem is NP-hard (for k>2)



Algorithm for multiway cut

For each i=1,...,k, compute the minimum weight
isolating cut for s, say C.

Discard the heaviest of these cuts and output the union
of the rest, say C

Isolating cut for s;: The set of edges whose removal
disconnects s, from the rest of the terminals

How can we find a minimum-weight isolating cut?
— Can we do it with a single s-t cut computation?



Approximation result

* The previous algorithm achieves an
approximation guarantee of 2-2/k

 Proof



Minimum k-cut

* A set of edges whose removal leaves k connected
components is called a k-cut. The minimum k-cut
problem asks for a minimum-weight k-cut

* Recursively compute cuts in G (and the resulting
connected components) until there are k
components left

* This is a (2-2/k)-approximation algorithm



Minimum k-cut algorithm

* Compute the Gomory-Hu tree T for G

e QOutput the union of the lightest k-1 cuts of
the n-1 cuts associated with edges of T in G;
let C be this union

* The above algorithm is a (2-2/k)-
approximation algorithm



Gomory-Hu Tree
T is a tree with vertex set V
The edges of T need not be in E

Let e be an edge in T; its removal from T creates
two connected components with vertex sets
(S,5')

The cut in G defined by partition (S,S’) is the cut
associated with e in G



Gomory-Hu tree

* Tree T is said to be the Gomory-Hu tree for G
if
— For each pair of vertices u,v in V, the weight of a
minimum u-v cut in G is the same as thatinT

— For each edge e in T, w’(e) is the weight of the cut
associated withe in G



Min-cuts again

What does it mean that a set of nodes are well or sparsely
interconnected?

min-cut: the min number of edges such that when removed
cause the graph to become disconnected

— small min-cut implies sparse connectivity

~ min E(U,V-U)=3 > Alij]

icU jeV-U




Measuring connectivity

What does it mean that a set of nodes are well
interconnected?

min-cut: the min number of edges such that when removed
cause the graph to become disconnected
— not always a good idea!




Graph expansion

 Normalize the cut by the size of the smallest
component

E(U,V-U)
ul,|v - ul}

a=

4

min {

E(U, V-U)

ul,|v-ulf

* We will now see how the graph expansion relates to
the eigenvalue of the adjacency matrix A

a(G)= min i




Spectral analysis

* The Laplacian matrix L = D — A where

— A = the adjacency matrix
— D =diag(d,,d,,...,d,)

* d. = degree of node |

* Therefore
— L(III) = di
— L(i,j) = -1, if there is an edge (i,j)



Laplacian Matrix properties

e The matrix Lis and

— all eigenvalues of L are positive

 The matrix L has 0 as an eigenvalue, and
corresponding eigenvector w, = (1,1,...,1)
— A, = 0 is the smallest eigenvalue



The second smallest eigenvalue

* The second smallest eigenvalue (also known
as ) A, satisfies

A, = min  x'Lx

XLwy ,HXH=1

* The vector that minimizes A, is called the

. It minimizes
Z (Xi _Xj)z
A, =min &2=—— where > x;=0

x=0 Z Xi



Spectral ordering

The values of x minimize

Z(Xi_xj)z 0
. (i, j)<E X. =
e > x; Zi |

For weighted matrices

Afi, il(x, - x, )
min ('Z]:) J( ) Zixizo

x#0 Z Xi2
The ordering according to the x; values will group similar
(connected) nodes together

Physical interpretation: The stable state of springs placed on
the edges of the graph



Spectral partition

Partition the nodes according to the ordering
induced by the Fielder vector

If u=(uy,u,,..,u,) is the Fielder vector, then split

nodes according to a value

— bisection: s is the median value in u

— ratio cut: s is the value that minimizes a

— sign: separate positive and negative values (5=0)

— gap: separate according to the largest gap in the values of
u

This works well (provably for special cases)



Fielder Value

* Thevalue A, is a good approximation of the graph expansion

G 2
AC) " )\, <2a(6) |
2d d = maximum degree

)‘2—23 a(G) <A, (2d —A,)

* Forthe of the Fielder vector we have that

CIZ
—< A, <£20(G
g = (G)

* |fthe max degree d is bounded we obtain a good approximation of the
minimum expansion cut



Conductance

* The expansion does not capture the inter-
cluster similarity well

— The nodes with high degree are more important

~in E(U, V-U)
PlG)=min ()0 —U)]

weighted degrees of nodes in U

du) => > Ali, j]

ieU jeU



Conductance and random walks

 Consider the normalized stochastic matrix M = DA
e The conductance of the Markov Chain M is

> > (M, ]

icU jeU

o) =min U —U)]

— the probability that the random walk escapes set U

* The conductance of the graph is the same as that of the
Markov Chain, ®(A) = d(M)

 Conductance ¢ is related to the second eigenvalue of the
matrix M

2
%
?Sl—uzﬁgﬁ



Interpretation of conductance

e Low conductance means that there is some
in the graph

— a subset of nodes not well connected with the rest
of the graph.

* High conductance means that the graph is
well connected



Clustering Conductance

 The conductance of a clustering is defined as
the maximum conductance over all clusters in
the clustering.

* Minimizing the conductance of clustering
seems like a natural choice



A spectral algorithm

Create matrix M = D1A
Find the second largest eigenvector v

Find the best ratio-cut (minimum conductance
cut) with respect to v

Recurse on the pieces induced by the cut.

The algorithm has provable guarantees




A divide and merge methodology

phase:

— Recursively partition the input into two pieces
until singletons are produced

— output: a tree hierarchy
 Merge phase:

— use dynamic programming to merge the leafs in
order to produce a tree-respecting flat clustering



Merge phase or dynamic-progamming
on trees

* The merge phase finds the optimal clustering
in the tree T produced by the divide phase

* k-means objective with cluster centers c,,...,c;:

FAC. ©H = Y d(u,c)’

i ueC,



Dynamic programming on trees

* OPT(C,i): optimal clustering for C using i
clusters

* C, C, the left and the right children of node C
* Dynamic-programming recurrence

( C,when i=1
OPT (C,i) =4 . . o .
arg min,_;, F(OPT (C,, j)uOPT (C.,i— J)), otherwise



