Graph Clustering
Why graph clustering is useful?

• Distance matrices are graphs → as useful as any other clustering

• Identification of communities in social networks

• Webpage clustering for better data management of web data
Outline

• Min s-t cut problem
• Min cut problem
• Multiway cut
• Minimum k-cut
• Other normalized cuts and spectral graph partitionings
Min s-t cut

- Weighted graph \(G(V,E) \)

- An s-t cut \(C = (S,T) \) of a graph \(G = (V, E) \) is a cut partition of \(V \) into \(S \) and \(T \) such that \(s \in S \) and \(t \in T \)

- Cost of a cut: \(\text{Cost}(C) = \sum_{e(u,v) \in E, u \in S, v \in T} w(e) \)

- Problem: Given \(G \), \(s \) and \(t \) find the minimum cost s-t cut
Max flow problem

• Flow network
 – Abstraction for material **flowing** through the edges
 – \(G = (V,E) \) directed graph with no parallel edges
 – Two distinguished nodes: \(s = \text{source} \), \(t = \text{sink} \)
 – \(c(e) = \) capacity of edge \(e \)
Cuts

• An s-t cut is a partition (S,T) of V with $s \in S$ and $t \in T$

• capacity of a cut (S,T) is $\text{cap}(S,T) = \sum_{e \text{ out of } S} c(e)$

• Find s-t cut with the minimum capacity: this problem can be solved optimally in polynomial time by using flow techniques
Flows

• An s-t flow is a function that satisfies
 – For each $e \in E \ 0 \leq f(e) \leq c(e)$ [capacity]
 – For each $v \in V - \{s, t\}: \sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

• The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$
Max flow problem

• Find $s-t$ flow of maximum value
Flows and cuts

• **Flow value lemma:** Let f be any flow and let (S,T) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s

\[\sum_{e \text{ out of } S} f(e) - \sum_{e \text{ in to } S} f(e) = v(f) \]
Flows and cuts

• **Weak duality:** Let f be any flow and let (S,T) be any s-t cut. Then the value of the flow is at most the capacity of the cut defined by (S,T):

$$v(f) \leq \text{cap}(S,T)$$
Certificate of optimality

• Let f be any flow and let (S,T) be any cut. If $v(f) = \text{cap}(S,T)$ then f is a max flow and (S,T) is a min cut.

• The min-cut max-flow problems can be solved optimally in polynomial time!
Setting

• Connected, undirected graph \(G=(V,E) \)

• Assignment of weights to edges: \(w: E \rightarrow R^+ \)

• **Cut:** Partition of \(V \) into two sets: \(V', V-V' \). The set of edges with one end point in \(V \) and the other in \(V' \) define the cut

• The removal of the cut disconnects \(G \)

• **Cost of a cut:** sum of the weights of the edges that have one of their end point in \(V' \) and the other in \(V-V' \)
Min cut problem

• Can we solve the min-cut problem using an algorithm for s-t cut?
Randomized min-cut algorithm

• **Repeat**: pick an edge uniformly at random and merge the two vertices at its end-points

 – If as a result there are several edges between some pairs of (newly-formed) vertices retain them all

 – Edges between vertices that are merged are removed (*no self-loops*)

• **Until** only **two** vertices remain

• The set of edges between these two vertices is a cut in G and is output as a candidate min-cut
Example of contraction
Observations on the algorithm

• Every cut in the graph at any intermediate stage is a cut in the original graph
Analysis of the algorithm

- **C** the min-cut of size \(k \rightarrow G \) has at least \(kn/2 \) edges
 - Why?

- **\(E_i \)**: the event of not picking an edge of **C** at the \(i \)-th step for \(1 \leq i \leq n-2 \)

- **Step 1:**
 - Probability that the edge randomly chosen is in **C** is at most \(2k/(kn)=2/n \) \(\Rightarrow \Pr(\mathcal{E}_1) \geq 1-2/n \)

- **Step 2:**
 - If \(\mathcal{E}_1 \) occurs, then there are at least \(k(n-1)/2 \) edges remaining
 - The probability of picking one from **C** is at most \(2/(n-1) \) \(\Rightarrow \Pr(\mathcal{E}_2|\mathcal{E}_1) = 1 - 2/(n-1) \)

- **Step i:**
 - Number of remaining vertices: \(n-i+1 \)
 - Number of remaining edges: \(k(n-i+1)/2 \) (since we never picked an edge from the cut)
 - \(\Pr(\mathcal{E}_i|\prod_{j=1}^{i-1} \mathcal{E}_j) \geq 1 - 2/(n-i+1) \)
 - Probability that no edge in **C** is ever picked: \(\Pr(\prod_{i=1}^{n-2} \mathcal{E}_i) \geq \prod_{i=1}^{n-2} (1-2/(n-i+1))=2/(n^2-n) \)

- The probability of discovering a particular min-cut is larger than \(2/n^2 \)

- Repeat the above algorithm \(n^2/2 \) times. The probability that a min-cut is not found is \((1-2/n^2)^{n^2/2} < 1/e \)
Multiway cut (analogue of s-t cut)

• **Problem:** Given a set of terminals $S = \{s_1, \ldots, s_k\}$ subset of V, a multiway cut is a set of edges whose removal disconnects the terminals from each other. The multiway cut problem asks for the minimum weight such set.

• The multiway cut problem is NP-hard (for $k>2$)
Algorithm for multiway cut

• For each $i=1,...,k$, compute the minimum weight isolating cut for s_i, say C_i
• Discard the heaviest of these cuts and output the union of the rest, say C

• Isolating cut for s_i: The set of edges whose removal disconnects s_i from the rest of the terminals

• How can we find a minimum-weight isolating cut?
 – Can we do it with a single s-t cut computation?
Approximation result

• The previous algorithm achieves an approximation guarantee of $2-\frac{2}{k}$

• **Proof**
Minimum k-cut

- A set of edges whose removal leaves k connected components is called a k-cut. The minimum k-cut problem asks for a **minimum-weight** k-cut.

- Recursively compute cuts in G (and the resulting connected components) until there are k components left.

- This is a $(2-2/k)$-approximation algorithm.
Minimum k-cut algorithm

• Compute the *Gomory-Hu* tree T for G

• Output the union of the *lightest $k-1$* cuts of the $n-1$ cuts associated with edges of T in G; let C be this union

• The above algorithm is a $(2-2/k)$-approximation algorithm
Gomory-Hu Tree

- **T** is a tree with vertex set **V**

- The edges of **T** need not be in **E**

- Let **e** be an edge in **T**; its removal from **T** creates two connected components with vertex sets (**S,S’**)

- The cut in **G** defined by partition (**S,S’**) is the cut associated with **e** in **G**
Gomory-Hu tree

• Tree T is said to be the Gomory-Hu tree for G if

 – For each pair of vertices u,v in V, the weight of a minimum u-v cut in G is the same as that in T

 – For each edge e in T, $w'(e)$ is the weight of the cut associated with e in G
Min-cuts again

• What does it mean that a set of nodes are well or sparsely interconnected?

• **min-cut**: the min number of edges such that when removed cause the graph to become disconnected

 – small min-cut implies sparse connectivity

\[
\min_{U} E(U, V-U) = \sum_{i \in U} \sum_{j \in V-U} A[i, j]
\]
Measuring connectivity

• What does it mean that a set of nodes are well interconnected?

• **min-cut**: the min number of edges such that when removed cause the graph to become disconnected
 – not always a good idea!
Graph expansion

- Normalize the cut by the size of the smallest component
- **Cut ratio:**
 \[a = \frac{E(U, V - U)}{\min \{ |U|, |V - U| \}} \]
- **Graph expansion:**
 \[a(G) = \min_U \frac{E(U, V - U)}{\min \{ |U|, |V - U| \}} \]
- We will now see how the graph expansion relates to the eigenvalue of the adjacency matrix \(A \)
Spectral analysis

• The Laplacian matrix $L = D - A$ where
 – A = the adjacency matrix
 – $D = \text{diag}(d_1,d_2,\ldots,d_n)$
 • d_i = degree of node i

• Therefore
 – $L(i,i) = d_i$
 – $L(i,j) = -1$, if there is an edge (i,j)
Laplacian Matrix properties

• The matrix L is symmetric and positive semi-definite
 – all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue, and corresponding eigenvector $w_1 = (1,1,...,1)$
 – $\lambda_1 = 0$ is the smallest eigenvalue
The second smallest eigenvalue

• The second smallest eigenvalue (also known as Fielder value) λ_2 satisfies

$$\lambda_2 = \min_{x \perp w_1, \|x\|=1} x^T L x$$

• The vector that minimizes λ_2 is called the Fielder vector. It minimizes

$$\lambda_2 = \min_{x \neq 0} \frac{\sum_{(i, j) \in E} (x_i - x_j)^2}{\sum_i x_i^2}$$

where $\sum_i x_i = 0$
Spectral ordering

• The values of x minimize

$$\min_{x \neq 0} \frac{\sum_{(i, j) \in E} (x_i - x_j)^2}{\sum_i x_i^2} \quad \sum_i x_i = 0$$

• For weighted matrices

$$\min_{x \neq 0} \frac{\sum_{(i, j)} A[i, j](x_i - x_j)^2}{\sum_i x_i^2} \quad \sum_i x_i = 0$$

• The ordering according to the x_i values will group similar (connected) nodes together

• Physical interpretation: The stable state of springs placed on the edges of the graph
Spectral partition

• Partition the nodes according to the ordering induced by the Fielder vector

• If \(u = (u_1, u_2, \ldots, u_n) \) is the Fielder vector, then split nodes according to a value \(s \)

 – **bisection**: \(s \) is the median value in \(u \)

 – **ratio cut**: \(s \) is the value that minimizes \(\alpha \)

 – **sign**: separate positive and negative values (\(s=0 \))

 – **gap**: separate according to the largest gap in the values of \(u \)

• This works well (provably for special cases)
Fielder Value

- The value λ_2 is a good approximation of the graph expansion

$$\frac{2a(G)}{2d} \leq \lambda_2 \leq 2a(G) \quad d = \text{maximum degree}$$

$$\frac{\lambda_2}{2} \leq a(G) \leq \sqrt{\lambda_2 (2d - \lambda_2)}$$

- For the minimum ratio cut of the Fielder vector we have that

$$\frac{a^2}{2d} \leq \lambda_2 \leq 2a(G)$$

- If the max degree d is bounded we obtain a good approximation of the minimum expansion cut
Conductance

• The expansion does not capture the inter-cluster similarity well
 – The nodes with high degree are more important

• Graph Conductance

\[
\varphi(G) = \min_U \frac{E(U, V - U)}{\min \{d(U), d(V - U)\}}
\]

– weighted degrees of nodes in U

\[
d(U) = \sum_{i \in U} \sum_{j \in U} A[i, j]
\]
Conductance and random walks

• Consider the normalized stochastic matrix \(M = D^{-1}A \)

• The conductance of the Markov Chain \(M \) is

\[
\varphi(M) = \min_U \frac{\sum_{i \in U} \sum_{j \notin U} p(i|M|i, j)}{\min \{p(U), p(V - U)\}}
\]

— the probability that the random walk escapes set \(U \)

• The conductance of the graph is the same as that of the Markov Chain, \(\phi(A) = \phi(M) \)

• Conductance \(\phi \) is related to the second eigenvalue of the matrix \(M \)

\[
\frac{\varphi^2}{8} \leq 1 - \mu_2 \leq \varphi
\]
Interpretation of conductance

• Low conductance means that there is some bottleneck in the graph
 – a subset of nodes not well connected with the rest of the graph.

• High conductance means that the graph is well connected
Clustering Conductance

• The conductance of a clustering is defined as the maximum conductance over all clusters in the clustering.

• Minimizing the conductance of clustering seems like a natural choice.
A spectral algorithm

- Create matrix $M = D^{-1}A$
- Find the second largest eigenvector v
- Find the best ratio-cut (minimum conductance cut) with respect to v
- Recurse on the pieces induced by the cut.

- The algorithm has provable guarantees
A divide and merge methodology

• **Divide** phase:
 – Recursively partition the input into two pieces until singletons are produced
 – output: a tree hierarchy

• **Merge** phase:
 – use dynamic programming to merge the leafs in order to produce a tree-respecting flat clustering
Merge phase or dynamic-programming on trees

• The **merge** phase finds the optimal clustering in the tree T produced by the **divide** phase

• **k**-means objective with cluster centers $c_1,...,c_k$:

$$F (\{C_1,...,C_k\}) = \sum_{i} \sum_{u \in C_i} d(u,c_i)^2$$
Dynamic programming on trees

- **OPT(C,i)**: optimal clustering for **C** using **i** clusters
- **C_l, C_r** the left and the right children of node **C**

Dynamic-programming recurrence

\[
OPT(C, i) = \begin{cases}
C, \text{ when } i = 1 \\
\arg \min_{1 \leq j \leq i} F(OPT(C_l, j) \cup OPT(C_r, i - j)), \text{ otherwise}
\end{cases}
\]