Graph Clustering

Why graph clustering is useful?

 Distance matrices are graphs → as useful as any other clustering

 Identification of communities in social networks

 Webpage clustering for better data management of web data

Outline

- Min s-t cut problem
- Min cut problem
- Multiway cut
- Minimum k-cut
- Other normalized cuts and spectral graph partitionings

Min s-t cut

- Weighted graph G(V,E)
- An s-t cut C = (S,T) of a graph G = (V, E) is a cut partition of V into S and T such that s∈S and t∈T
- Cost of a cut: Cost(C) = Σ_{e(u,v) u∈S, v∈T} w(e)
- Problem: Given G, s and t find the minimum cost
 s-t cut

Max flow problem

- Flow network
 - Abstraction for material **flowing** through the edges
 - G = (V,E) directed graph with no parallel edges
 - Two distinguished nodes: s = source, t= sink
 - c(e) = capacity of edge e

Cuts

 An s-t cut is a partition (S,T) of V with sES and tET

capacity of a cut (S,T) is cap(S,T) = Σ_{e out of S}c(e)

 Find s-t cut with the minimum capacity: this problem can be solved optimally in polynomial time by using *flow techniques*

Flows

- An s-t flow is a function that satisfies
 - For each e∈E 0≤f(e) ≤c(e) [capacity]
 - For each vev-{s,t}: $\Sigma_{e in to v} f(e) = \Sigma_{e out of v} f(e)$ [conservation]

The value of a flow f is: v(f) = Σ_{e out of s} f(e)

Max flow problem

• Find s-t flow of maximum value

Flows and cuts

Flow value lemma: Let f be any flow and let
 (S,T) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s

$$Σ_{e \text{ out of } S} f(e) - Σ_{e \text{ in to } S} f(e) = v(f)$$

Flows and cuts

 Weak duality: Let f be any flow and let (S,T) be any s-t cut. Then the value of the flow is at most the capacity of the cut defined by (S,T):

v(f) ≤cap(S,T)

Certificate of optimality

Let f be any flow and let (S,T) be any cut. If v(f)
 = cap(S,T) then f is a max flow and (S,T) is a min cut.

• The min-cut max-flow problems can be solved optimally in polynomial time!

Setting

- Connected, undirected graph G=(V,E)
- Assignment of weights to edges: w: $E \rightarrow R^+$
- Cut: Partition of V into two sets: V', V-V'. The set of edges with one end point in V and the other in V' define the cut
- The removal of the cut disconnects G
- Cost of a cut: sum of the weights of the edges that have one of their end point in V' and the other in V-V'

Min cut problem

• Can we solve the min-cut problem using an algorithm for s-t cut?

Randomized min-cut algorithm

- **Repeat :** pick an edge uniformly at random and merge the two vertices at its end-points
 - If as a result there are several edges between some pairs of (newly-formed) vertices retain them all
 - Edges between vertices that are merged are removed (*no self-loops*)
- Until only *two* vertices remain
- The set of edges between these two vertices is a cut in G and is output as a candidate min-cut

Example of contraction

Observations on the algorithm

• Every cut in the graph at any intermediate stage is a cut in the original graph

Analysis of the algorithm

- C the min-cut of size $k \rightarrow G$ has at least kn/2 edges
 - Why?
- E_i : the event of not picking an edge of C at the i-th step for $1 \le i \le n-2$
- Step 1:
 - Probability that the edge randomly chosen is in C is at most $2k/(kn)=2/n \rightarrow Pr(E_1) \ge 1-2/n$
- Step 2:
 - If E_1 occurs, then there are at least k(n-1)/2 edges remaining
 - The probability of picking one from C is at most $2/(n-1) \rightarrow Pr(E_2|E_1) = 1 2/(n-1)$
- Step i:
 - Number of remaining vertices: n-i+1
 - Number of remaining edges: k(n-i+1)/2 (since we never picked an edge from the cut)
 - Pr(Ei | $\Pi_{j=1...i-1}$ E_j) ≥ 1 2/(n-i+1)
 - Probability that no edge in C is ever picked: $Pr(\Pi_{i=1...n-2} E_i) \ge \Pi_{i=1...n-2}(1-2/(n-i+1))=2/(n^2-n)$
- The probability of discovering a particular min-cut is larger than $2/n^2$
- Repeat the above algorithm n²/2 times. The probability that a min-cut is not found is (1-2/n²)^{n^2/2} < 1/e

Multiway cut (analogue of s-t cut)

Problem: Given a set of terminals S = {s₁,...,s_k} subset of V, a multiway cut is a set of edges whose removal disconnects the terminals from each other. The multiway cut problem asks for the minimum weight such set.

• The multiway cut problem is NP-hard (for k>2)

Algorithm for multiway cut

- For each i=1,...,k, compute the minimum weight isolating cut for s_i, say C_i
- Discard the heaviest of these cuts and output the union of the rest, say C
- Isolating cut for s_i: The set of edges whose removal disconnects s_i from the rest of the terminals
- How can we find a minimum-weight isolating cut?
 Can we do it with a single s-t cut computation?

Approximation result

• The previous algorithm achieves an approximation guarantee of 2-2/k

• Proof

Minimum k-cut

- A set of edges whose removal leaves k connected components is called a k-cut. The minimum k-cut problem asks for a minimum-weight k-cut
- Recursively compute cuts in G (and the resulting connected components) until there are k components left
- This is a (2-2/k)-approximation algorithm

Minimum k-cut algorithm

• Compute the *Gomory-Hu* tree **T** for **G**

 Output the union of the *lightest* k-1 cuts of the n-1 cuts associated with edges of T in G; let C be this union

• The above algorithm is a (2-2/k)approximation algorithm

Gomory-Hu Tree

- T is a tree with vertex set V
- The edges of **T** need not be in **E**
- Let e be an edge in T; its removal from T creates two connected components with vertex sets (S,S')
- The cut in G defined by partition (S,S') is the cut associated with e in G

Gomory-Hu tree

- Tree T is said to be the Gomory-Hu tree for G if
 - For each pair of vertices u,v in V, the weight of a minimum u-v cut in G is the same as that in T
 - For each edge e in T, w'(e) is the weight of the cut associated with e in G

Min-cuts again

- What does it mean that a set of nodes are well or sparsely interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
 - small min-cut implies sparse connectivity

Measuring connectivity

- What does it mean that a set of nodes are well interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
 - not always a good idea!

U

Graph expansion

- Normalize the cut by the size of the smallest component
- Cut ratio:

$$a = \frac{E(U, V - U)}{\min \{|U|, |V - U|\}}$$

• Graph expansion:

$$a(G) = \min_{U} \frac{E(U, V - U)}{\min \{|U|, |V - U|\}}$$

 We will now see how the graph expansion relates to the eigenvalue of the adjacency matrix A

Spectral analysis

- The Laplacian matrix L = D A where
 - A = the adjacency matrix
 - $-D = diag(d_1, d_2, ..., d_n)$
 - d_i = degree of node i

- Therefore
 - $L(i,i) = d_i$
 - L(i,j) = -1, if there is an edge (i,j)

Laplacian Matrix properties

- The matrix L is symmetric and positive semidefinite
 - all eigenvalues of ${\bf L}$ are positive
- The matrix L has 0 as an eigenvalue, and corresponding eigenvector w₁ = (1,1,...,1)
 λ₁ = 0 is the smallest eigenvalue

The second smallest eigenvalue

• The second smallest eigenvalue (also known as Fielder value) λ_2 satisfies

$$\lambda_2 = \min_{\mathbf{x} \perp \mathbf{w}_1, \|\mathbf{x}\| = 1} \mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x}$$

- The vector that minimizes λ_2 is called the Fielder vector. It minimizes

$$\lambda_{2} = \min_{x \neq 0} \frac{\sum_{(i, j) \in E} (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2}} \text{ where } \sum_{i} x_{i} = 0$$

Spectral ordering

• The values of x minimize

$$\min_{x \neq 0} \frac{\sum_{(i, j) \in E} (x_i - x_j)^2}{\sum_{i} x_i^2} \qquad \sum_{i} x_i = 0$$

• For weighted matrices

$$\min_{x \neq 0} \frac{\sum_{(i, j)} A[i, j](x_i - x_j)^2}{\sum_{i} x_i^2} \sum_{i} x_i = 0$$

- The ordering according to the x_i values will group similar (connected) nodes together
- Physical interpretation: The stable state of springs placed on the edges of the graph

Spectral partition

- Partition the nodes according to the ordering induced by the Fielder vector
- If u = (u₁, u₂,..., u_n) is the Fielder vector, then split nodes according to a value s
 - bisection: s is the median value in u
 - ratio cut: s is the value that minimizes α
 - sign: separate positive and negative values (s=0)
 - gap: separate according to the largest gap in the values of u
- This works well (provably for special cases)

Fielder Value

• The value λ_2 is a good approximation of the graph expansion

$$\frac{a(G)^{2}}{2d} \le \lambda_{2} \le 2a(G)$$

$$\frac{\lambda_{2}}{2} \le a(G) \le \sqrt{\lambda_{2}(2d - \lambda_{2})}$$

$$d = \text{maximum degree}$$

• For the minimum ratio cut of the Fielder vector we have that

$$\frac{a^2}{2d} \leq \lambda_2 \leq 2a(G)$$

• If the max degree d is bounded we obtain a good approximation of the minimum expansion cut

Conductance

• The expansion does not capture the intercluster similarity well

- The nodes with high degree are more important

Graph Conductance

$$\varphi(G) = \min_{U} \frac{E(U, V - U)}{\min \{d(U), d(V - U)\}}$$

- weighted degrees of nodes in U d(U) = $\sum_{i \in U} \sum_{i \in U} A[i, j]$

Conductance and random walks

- Consider the normalized stochastic matrix M = D⁻¹A
- The conductance of the Markov Chain M is

$$\varphi(\mathsf{M}) = \min_{\mathsf{U}} \frac{\sum_{i \in \mathsf{U}} \sum_{j \notin \mathsf{U}} \mathsf{n}(i)\mathsf{M}[i, j]}{\min \{\mathsf{n}(\mathsf{U}), \mathsf{n}(\mathsf{V} - \mathsf{U})\}}$$

- the probability that the random walk escapes set U
- The conductance of the graph is the same as that of the Markov Chain, $\phi(A) = \phi(M)$
- Conductance φ is related to the second eigenvalue of the matrix M

$$\frac{\varphi^2}{8} \le 1 - \mu_2 \le \varphi$$

Interpretation of conductance

- Low conductance means that there is some bottleneck in the graph
 - a subset of nodes not well connected with the rest of the graph.

High conductance means that the graph is well connected

Clustering Conductance

• The conductance of a clustering is defined as the maximum conductance over all clusters in the clustering.

• Minimizing the conductance of clustering seems like a natural choice

A spectral algorithm

- Create matrix M = D⁻¹A
- Find the second largest eigenvector v
- Find the best ratio-cut (minimum conductance cut) with respect to v
- Recurse on the pieces induced by the cut.

• The algorithm has provable guarantees

A divide and merge methodology

- Divide phase:
 - Recursively partition the input into two pieces until singletons are produced
 - output: a tree hierarchy
- Merge phase:
 - use dynamic programming to merge the leafs in order to produce a tree-respecting flat clustering

Merge phase or dynamic-progamming on trees

 The merge phase finds the optimal clustering in the tree T produced by the divide phase

• **k**-means objective with cluster centers $c_1, ..., c_k$:

$$F(\{C_1,...,C_k\}) = \sum_{i} \sum_{u \in C_i} d(u,c_i)^2$$

Dynamic programming on trees

- OPT(C,i): optimal clustering for C using i clusters
- C_I, C_r the left and the right children of node C

• Dynamic-programming recurrence

$$OPT (C, i) = \begin{cases} C, \text{ when } i = 1\\ \arg \min_{1 \le j \le i} F(OPT (C_i, j) \cup OPT (C_r, i - j)), \text{ otherwise} \end{cases}$$