# Mining Association Rules in Large Databases

#### Association rules

 Given a set of transactions D, find rules that will predict the occurrence of an item (or a set of items) based on the occurrences of other items in the transaction

#### **Market-Basket transactions**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Examples of association rules**

```
\{ \text{Diaper} \} \rightarrow \{ \text{Beer} \},
\{ \text{Milk, Bread} \} \rightarrow \{ \text{Diaper,Coke} \},
\{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \},
```

## An even simpler concept: frequent itemsets

 Given a set of transactions D, find combination of items that occur frequently

#### **Market-Basket transactions**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Examples of frequent itemsets**

```
{Diaper, Beer},
{Milk, Bread}
{Beer, Bread, Milk},
```

#### Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

### Definition: Frequent Itemset

#### Itemset

- A set of one or more items
  - E.g.: {Milk, Bread, Diaper}
- k-itemset
  - An itemset that contains k items

#### Support count (σ)

- Frequency of occurrence of an itemset (number of transactions it appears)
- E.g.  $\sigma(\{Milk, Bread, Diaper\}) = 2$

#### Support

- Fraction of the transactions in which an itemset appears
- E.g. s({Milk, Bread, Diaper}) = 2/5

#### Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Why do we want to find frequent itemsets?

- Find all combinations of items that occur together
- They might be interesting (e.g., in placement of items in a store
   (i)
- Frequent itemsets are only positive combinations (we do not report combinations that do not occur frequently together)
- Frequent itemsets aims at providing a summary for the data

#### Finding frequent sets

- Task: Given a transaction database D and a minsup threshold find all frequent itemsets and the frequency of each set in this collection
- Stated differently: Count the number of times combinations of attributes occur in the data. If the count of a combination is above minsup report it.

 Recall: The input is a transaction database D where every transaction consists of a subset of items from some universe /

#### How many itemsets are there?



#### When is the task sensible and feasible?

- If minsup = 0, then all subsets of / will be frequent and thus the size of the collection will be very large
- This summary is very large (maybe larger than the original input) and thus not interesting
- The task of finding all frequent sets is interesting typically only for relatively large values of minsup

## A simple algorithm for finding all frequent itemsets ??



## Brute-force algorithm for finding all frequent itemsets?

- Generate all possible itemsets (lattice of itemsets)
  - Start with 1-itemsets, 2-itemsets,...,d-itemsets
- Compute the frequency of each itemset from the data
  - Count in how many transactions each itemset occurs
- If the support of an itemset is above minsup report it as a frequent itemset

## Brute-force approach for finding all frequent itemsets

Complexity?

Match every candidate against each transaction

– For M candidates and N transactions, the complexity is O(NMw) => Expensive since M = 2<sup>d</sup>!!!

#### Speeding-up the brute-force algorithm

- Reduce the number of candidates (M)
  - Complete search: M=2<sup>d</sup>
  - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
  - Reduce size of N as the size of itemset increases
  - Use vertical-partitioning of the data to apply the mining algorithms
- Reduce the number of comparisons (NM)
  - Use efficient data structures to store the candidates or transactions
  - No need to match every candidate against every transaction

#### Reduce the number of candidates

- Apriori principle (Main observation):
  - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- The support of an itemset *never exceeds* the support of its subsets
- This is known as the anti-monotone property of support

### Example

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

```
s(Bread) > s(Bread, Beer)
s(Milk) > s(Bread, Milk)
s(Diaper, Beer) > s(Diaper, Beer, Coke)
```

#### Illustrating the Apriori principle



#### Illustrating the Apriori principle

| Item   | Count |  |
|--------|-------|--|
| Bread  | 4     |  |
| Coke   | 2     |  |
| Milk   | 4     |  |
| Beer   | 3     |  |
| Diaper | 4     |  |
| Eggs   | 1     |  |

Items (1-itemsets)

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| (Milk,Diaper)  | 3     |
| {Beer,Diaper}  | 3     |

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

minsup = 3/5



Triplets (3-itemsets)

| If every subset is considered,                 |
|------------------------------------------------|
| ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$ |
| With support-based pruning,                    |
| 6 + 6 + 1 = 13                                 |

| Itemset             | Count |
|---------------------|-------|
| {Bread,Milk,Diaper} | 3     |



### Exploiting the Apriori principle

- Find frequent 1-items and put them to  $L_k$  (k=1)
- Use  $L_k$  to generate a collection of *candidate* itemsets  $C_{k+1}$  with size (k+1)
- Scan the database to find which itemsets in  $C_{k+1}$  are frequent and put them into  $L_{k+1}$
- If  $L_{k+1}$  is not empty
  - k=k+1
  - Goto step 2

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", *Proc. of the 20th Int'l Conference on Very Large Databases*, 1994.

## The Apriori algorithm

```
C<sub>k</sub>: Candidate itemsets of size k
L_k: frequent itemsets of size k
L<sub>1</sub> = {frequent 1-itemsets};
for (k = 2; L_k != \emptyset; k++)
  C_{k+1} = GenerateCandidates(L_k)
  for each transaction t in database do
        increment count of candidates in C_{k+1} that are contained in t
  endfor
  L_{k+1} = candidates in C_{k+1} with support \geq min_sup
endfor
return \bigcup_{k} L_{k};
```

#### GenerateCandidates

- Assume the items in  $L_k$  are listed in an order (e.g., alphabetical)
- Step 1: self-joining L<sub>k</sub> (IN SQL)

```
insert into C_{k+1}

select p.item_1, p.item_2, ..., p.item_k, q.item_k

from L_k p, L_k q

where p.item_1=q.item_1, ..., p.item_{k-1}=q.item_{k-1}, p.item_k < q.item_k
```

## **Example of Candidates Generation**

- L<sub>3</sub>={abc, abd, acd, ace, bcd}
- *Self-joining*:  $L_3*L_3$ 
  - abcd from abc and abd
  - acde from acd and ace



#### GenerateCandidates

- Assume the items in  $L_k$  are listed in an order (e.g., alphabetical)
- Step 1: self-joining L<sub>k</sub> (IN SQL)

```
insert into C_{k+1} select p.item_1, p.item_2, ..., p.item_k, q.item_k from L_k p, L_k q where p.item_1=q.item_1, ..., p.item_{k-1}=q.item_{k-1}, p.item_k<q.item_k
```

Step 2: pruning

```
for all itemsets c in C_{k+1} do

for all k-subsets s of c do

if (s is not in L_k) then delete c from C_{k+1}
```

## **Example of Candidates Generation**

- L<sub>3</sub>={abc, abd, acd, ace, bcd}
- *Self-joining*:  $L_3*L_3$ 
  - abcd from abc and abd
  - acde from acd and ace
- Pruning:
  - acde is removed because ade is not in L<sub>3</sub>
- $C_{\Delta}$ ={abcd}



## The Apriori algorithm

```
C<sub>k</sub>: Candidate itemsets of size k
L_k: frequent itemsets of size k
L_1 = {frequent items};
for (k = 1; L_k != \emptyset; k++)
 C_{k+1} = GenerateCandidates(L_k)
 for each transaction t in database do
        increment count of candidates in C_{k+1} that are contained in t
  endfor
  L_{k+1} = candidates in C_{k+1} with support \geq min_sup
endfor
return \bigcup_{k} L_{k};
```

### How to Count Supports of Candidates?

Naive algorithm?

#### – Method:

- Candidate itemsets are stored in a hash-tree
- Leaf node of hash-tree contains a list of itemsets and counts
- Interior node contains a hash table
- Subset function: finds all the candidates contained in a transaction

#### Example of the hash-tree for C<sub>3</sub>



#### Example of the hash-tree for C<sub>3</sub>



#### Example of the hash-tree for C<sub>3</sub>



The subset function finds all the candidates contained in a transaction:

- At the root level it hashes on all items in the transaction
- At level i it hashes on all items in the transaction that come after item the i-th item

#### Discussion of the Apriori algorithm

- Much faster than the Brute-force algorithm
  - It avoids checking all elements in the lattice
- The running time is in the worst case O(2<sup>d</sup>)
  - Pruning really prunes in practice
- It makes multiple passes over the dataset
  - One pass for every level k
- Multiple passes over the dataset is inefficient when we have thousands of candidates and millions of transactions

## Making a single pass over the data: the AprioriTid algorithm

- The database is **not** used for counting support after the 1<sup>st</sup> pass!
- Instead information in data structure C<sub>k</sub>' is used for counting support in every step
  - $C_k' = \{ \langle TID, \{X_k\} \rangle \mid X_k \text{ is a potentially frequent } k \text{-itemset in transaction with } id=TID \}$
  - C<sub>1</sub>': corresponds to the original database (every item i is replaced by itemset {i})
  - The member  $C_k$  corresponding to transaction t is < t.TID,  $\{c \in C_k \mid c \text{ is contained in } t\}>$

## The AprioriTID algorithm

```
L<sub>1</sub> = {frequent 1-itemsets}
   C_1' = database D
• for (k=2, L<sub>k-1</sub>'≠ empty; k++)
              C_k = GenerateCandidates(L_{k-1})
              C_{\nu}' = \{\}
              for all entries \mathbf{t} \in \mathbf{C_{k-1}}'
                              C_{t} = \{c \in C_{k} | t[c-c[k]] = 1 \text{ and } t[c-c[k-1]] = 1\}
                              for all c∈ C<sub>t</sub> {c.count++}
                              if (C_t \neq \{\})
                                   append C<sub>t</sub> to C<sub>k</sub>'
                              endif
               endfor
               L_k = \{c \in C_k \mid c.count >= minsup\}
       endfor
   return \mathbf{U}_{\iota} L
```

#### AprioriTid Example (minsup=2)



# Discussion on the AprioriTID algorithm

```
L<sub>1</sub> = {frequent 1-itemsets}
C<sub>1</sub>' = database D
for (k=2, L_{k-1}'\neq empty; k++)
           C_k = GenerateCandidates(L_{k-1})
           C_{\nu}' = \{\}
           for all entries \mathbf{t} \in \mathbf{C_{k-1}}'
                            C_t = \{c \in C_k | t[c-c[k]] = 1 \text{ and } t[c-c[k-1]] = 1\}
                            for all c∈ C, {c.count++}
                            if (C_t \neq \{\})
                                  append C<sub>t</sub> to C<sub>k</sub>'
                             endif
           endfor
           L_k = \{c \in C_k \mid c.count >= minsup\}
  endfor
return U<sub>k</sub> L<sub>k</sub>
```

One single pass over the data

C<sub>k</sub>' is generated from C<sub>k-1</sub>'

 For small values of k, C<sub>k</sub>' could be larger than the database!

 For large values of k, C<sub>k</sub>' can be very small

### Apriori vs. AprioriTID

 Apriori makes multiple passes over the data while AprioriTID makes a single pass over the data

 AprioriTID needs to store additional data structures that may require more space than Apriori

 Both algorithms need to check all candidates' frequencies in every step

#### **Implementations**

Lots of them around

 See, for example, the web page of Bart Goethals: http://www.adrem.ua.ac.be/~goethals/software/

 Typical input format: each row lists the items (using item id's) that appear in every row

#### Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

#### Definition: Association Rule

#### Let D be database of transactions

- Let I be the set of items that appear in the database, e.g., I={A,B,C,D,E,F}
- A rule is defined by  $X \rightarrow Y$ , where  $X \subset I$ ,  $Y \subset I$ , and  $X \cap Y = \emptyset$ 
  - $e.g.: \{B,C\} \rightarrow \{A\}$  is a rule

#### **Definition: Association Rule**

#### Association Rule

- An implication expression of the form X → Y, where X and Y are non-overlapping itemsets
- Example: {Milk, Diaper} → {Beer}

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Rule Evaluation Metrics

- Support (s)
  - Fraction of transactions that contain both X and Y
- Confidence (c)
  - Measures how often items in Y appear in transactions that contain X

#### **Example:**

 $\{Milk, Diaper\} \rightarrow Beer$ 

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

# Rule Measures: Support and Confidence



- support, s, probability that a transaction contains {X ∪ Y}
- confidence, c, conditional probability
   that a transaction having X also contains Y

| TID | Items |
|-----|-------|
| 100 | A,B,C |
| 200 | A,C   |
| 300 | A,D   |
| 400 | B,E,F |

Let minimum support 50%, and minimum confidence 50%, we have

- $A \rightarrow C$  (50%, 66.6%)
- $C \rightarrow A$  (50%, 100%)

## Example

| TID | date     | items bought    |
|-----|----------|-----------------|
| 100 | 10/10/99 | {F,A,D,B}       |
| 200 | 15/10/99 | $\{D,A,C,E,B\}$ |
| 300 | 19/10/99 | $\{C,A,B,E\}$   |
| 400 | 20/10/99 | $\{B,A,D\}$     |

What is the *support* and *confidence* of the rule:  $\{B,D\} \rightarrow \{A\}$ 

- Support:
  - percentage of tuples that contain {A,B,D} = 75%
- Confidence:

```
\frac{\text{number of tuples that contain } \{A,B,D\}}{\text{number of tuples that contain } \{B,D\}} = 100\%
```

## Association-rule mining task

- Given a set of transactions D, the goal of association rule mining is to find all rules having
  - support ≥ minsup threshold
  - confidence ≥ *minconf* threshold

# Brute-force algorithm for association-rule mining

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds

⇒ Computationally prohibitive!

### **Computational Complexity**

- Given d unique items in /:
  - Total number of itemsets = 2<sup>d</sup>
  - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

## Mining Association Rules

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Example of Rules:**

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

#### **Observations:**

- All the above rules are binary partitions of the same itemset:
   {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

## Mining Association Rules

- Two-step approach:
  - Frequent Itemset Generation
    - Generate all itemsets whose support ≥ minsup

#### Rule Generation

 Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset

# Rule Generation – Naive algorithm

 Given a frequent itemset X, find all non-empty subsets y⊂ X such that y→ X − y satisfies the minimum confidence requirement

— If {A,B,C,D} is a frequent itemset, candidate rules:

ABC 
$$\rightarrow$$
D, ABD  $\rightarrow$ C, ACD  $\rightarrow$ B, BCD  $\rightarrow$ A, A  $\rightarrow$ BCD, B  $\rightarrow$ ACD, C  $\rightarrow$ ABD, D  $\rightarrow$ ABC AB  $\rightarrow$ CD, AC  $\rightarrow$  BD, AD  $\rightarrow$  BC, BC  $\rightarrow$ AD, BD  $\rightarrow$ AC, CD  $\rightarrow$ AB,

• If |X| = k, then there are  $2^k - 2$  candidate association rules (ignoring  $L \to \emptyset$  and  $\emptyset \to L$ )

## Efficient rule generation

- How to efficiently generate rules from frequent itemsets?
  - In general, confidence does not have an anti-monotone property

```
c(ABC \rightarrow D) can be larger or smaller than c(AB \rightarrow D)
```

- But confidence of rules generated from the same itemset has an anti-monotone property
- Example:  $X = \{A,B,C,D\}$ :

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

- Why?

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

### Rule Generation for Apriori Algorithm



#### Apriori algorithm for rule generation

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

CD→AB

BD→AC

D→ABC

join(CD→AB,BD—>AC)
 would produce the candidate
 rule D→ABC

Prune rule D ABC if there exists a subset (e.g., AD BC) that does not have high confidence