Mining Association Rules in Large Databases
Association rules

- Given a set of transactions D, find rules that will predict the occurrence of an item (or a set of items) based on the occurrences of other items in the transaction.

Market-Basket transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Examples of association rules

- $\{\text{Diaper}\} \rightarrow \{\text{Beer}\}$
- $\{\text{Milk, Bread}\} \rightarrow \{\text{Diaper, Coke}\}$
- $\{\text{Beer, Bread}\} \rightarrow \{\text{Milk}\}$
An even simpler concept: frequent itemsets

- Given a set of transactions D, find combination of items that occur frequently

Market-Basket transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Examples of frequent itemsets

\{Diaper, Beer\},
\{Milk, Bread\}
\{Beer, Bread, Milk\},
Lecture outline

• **Task 1:** Methods for finding all frequent itemsets efficiently

• **Task 2:** Methods for finding association rules efficiently
Definition: Frequent Itemset

- **Itemset**
 - A set of one or more items
 - E.g.: \{Milk, Bread, Diaper\}
 - k-itemset
 - An itemset that contains k items

- **Support count (σ)**
 - Frequency of occurrence of an itemset (number of transactions it appears)
 - E.g. \(σ(\{\text{Milk, Bread, Diaper}\}) = 2\)

- **Support**
 - Fraction of the transactions in which an itemset appears
 - E.g. \(s(\{\text{Milk, Bread, Diaper}\}) = 2/5\)

- **Frequent Itemset**
 - An itemset whose support is greater than or equal to a \textit{mins}up threshold

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Why do we want to find frequent itemsets?

• Find all combinations of items that occur together

• They might be interesting (e.g., in placement of items in a store 😊)

• Frequent itemsets are only positive combinations (we do not report combinations that do not occur frequently together)

• Frequent itemsets aims at providing a summary for the data
Finding frequent sets

• **Task:** Given a transaction database D and a minsup threshold find all frequent itemsets and the frequency of each set in this collection

• **Stated differently:** Count the number of times combinations of attributes occur in the data. If the count of a combination is above minsup report it.

• **Recall:** The input is a transaction database D where every transaction consists of a subset of items from some universe I
How many itemsets are there?

Given d items, there are 2^d possible itemsets.
When is the task sensible and feasible?

• If \texttt{minsup} = 0, then all subsets of \(I \) will be frequent and thus the size of the collection will be very large.

• This summary is very large (maybe larger than the original input) and thus not interesting.

• The task of finding all frequent sets is interesting typically only for relatively large values of \texttt{minsup}.
A simple algorithm for finding all frequent itemsets ??
Brute-force algorithm for finding all frequent itemsets?

• Generate all possible itemsets (lattice of itemsets)
 – Start with 1-itemsets, 2-itemsets,...,d-itemsets

• Compute the frequency of each itemset from the data
 – Count in how many transactions each itemset occurs

• If the support of an itemset is above \text{minsup} report it as a frequent itemset
Brute-force approach for finding all frequent itemsets

• Complexity?

 – Match every candidate against each transaction

 – For M candidates and N transactions, the complexity is $\sim O(NMw)$ => Expensive since $M = 2^d$!!!
Speeding-up the brute-force algorithm

• Reduce the **number of candidates** (M)
 – Complete search: \(M = 2^d \)
 – Use pruning techniques to reduce M

• Reduce the **number of transactions** (N)
 – Reduce size of N as the size of itemset increases
 – Use vertical-partitioning of the data to apply the mining algorithms

• Reduce the **number of comparisons** (NM)
 – Use efficient data structures to store the candidates or transactions
 – No need to match every candidate against every transaction
Reduce the number of candidates

• **Apriori principle (Main observation):**
 – If an itemset is frequent, then all of its subsets must also be frequent

• Apriori principle holds due to the following property of the support measure:

\[\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y) \]

 – The support of an itemset *never exceeds* the support of its subsets
 – This is known as the *anti-monotone* property of support
Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>$s(\text{Bread}) > s(\text{Bread, Beer})$</th>
<th>$s(\text{Milk}) > s(\text{Bread, Milk})$</th>
<th>$s(\text{Diaper, Beer}) > s(\text{Diaper, Beer, Coke})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Illustrating the Apriori principle

Found to be Infrequent

Pruned supersets
Illustrating the Apriori principle

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

Items (1-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread,Milk}</td>
<td>3</td>
</tr>
<tr>
<td>{Bread,Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Bread,Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Milk,Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Milk,Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Beer,Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Pairs (2-itemsets)
(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread,Milk,Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

\(6C_1 + 6C_2 + 6C_3 = 41\)

With support-based pruning, \(6 + 6 + 1 = 13\)

\(\text{minsup} = \frac{3}{5}\)
Exploiting the Apriori principle

1. Find frequent 1-items and put them to L_k (k=1)
2. Use L_k to generate a collection of candidate itemsets C_{k+1} with size (k+1)
3. Scan the database to find which itemsets in C_{k+1} are frequent and put them into L_{k+1}
4. If L_{k+1} is not empty
 - k=k+1
 - Goto step 2

The Apriori algorithm

C_k: Candidate itemsets of size k

L_k: frequent itemsets of size k

$L_1 = \{\text{frequent 1-itemsets}\}$;

for $k = 2; L_k \neq \emptyset; k++$

$C_{k+1} = \text{GenerateCandidates}(L_k)$

for each transaction t in database do

increment count of candidates in C_{k+1} that are contained in t

endfor

$L_{k+1} = \text{candidates in } C_{k+1} \text{ with support } \geq \text{min}_\text{sup}$

endfor

return $\bigcup_k L_k$;
GenerateCandidates

• Assume the items in L_k are listed in an order (e.g., alphabetical)
• **Step 1: self-joining L_k (IN SQL)**

 insert into C_{k+1}
 select $p.item_1, p.item_2, ..., p.item_k, q.item_k$
 from $L_k p, L_k q$
 where $p.item_1=q.item_1, ..., p.item_{k-1}=q.item_{k-1}, p.item_k < q.item_k$
Example of Candidates Generation

- \(L_3 = \{abc, abd, acd, ace, bcd\} \)

- **Self-joining**: \(L_3 \times L_3 \)
 - \(abcd \) from \(abc \) and \(abd \)
 - \(acde \) from \(acd \) and \(ace \)
GenerateCandidates

• Assume the items in L_k are listed in an order (e.g., alphabetical)

• **Step 1:** *self-joining* L_k *(IN SQL)*

 insert into C_{k+1}

 select $p\text{.item}_1, p\text{.item}_2, ..., p\text{.item}_k, q\text{.item}_k$

 from $L_k p, L_k q$

 where $p\text{.item}_1=q\text{.item}_1, ..., p\text{.item}_{k-1}=q\text{.item}_{k-1}, p\text{.item}_k < q\text{.item}_k$

• **Step 2:** *pruning*

 forall *itemsets c in* C_{k+1} *do*

 forall *k-subsets s of c do

 if *(s is not in* L_k *) then delete* c *from* C_{k+1}
Example of Candidates Generation

- \(L_3 = \{abc, abd, acd, ace, bcd\} \)

- **Self-joining**: \(L_3 \ast L_3 \)
 - \(abcd \) from \(abc \) and \(abd \)
 - \(acde \) from \(acd \) and \(ace \)

- **Pruning**:
 - \(acde \) is removed because \(ade \) is not in \(L_3 \)

- \(C_4 = \{abcd\} \)
The Apriori algorithm

\(C_k \): Candidate itemsets of size \(k \)
\(L_k \): frequent itemsets of size \(k \)

\(L_1 = \{\text{frequent items}\}; \)

\textbf{for} \((k = 1; \ L_k \neq \emptyset; \ k++) \)

\(C_{k+1} = \text{GenerateCandidates}(L_k) \)

\textbf{for} each transaction \(t \) in database \n
\begin{itemize}
 \item increment count of candidates in \(C_{k+1} \) that are contained in \(t \)
\end{itemize}

\textbf{endfor}

\(L_{k+1} = \text{candidates in } C_{k+1} \text{ with support } \geq \text{min_sup} \)

\textbf{endfor}

\textbf{return} \(\bigcup_k L_k \);
How to Count Supports of Candidates?

- Naive algorithm?

- Method:
 - Candidate itemsets are stored in a hash-tree
 - *Leaf node* of hash-tree contains a list of itemsets and counts
 - *Interior node* contains a hash table
 - *Subset function*: finds all the candidates contained in a transaction
Example of the hash-tree for C_3

Hash function: $\text{mod } 3$

- Hash on 1st item
- Hash on 2nd item
- Hash on 3rd item
Example of the hash-tree for C_3

Hash function: $\text{mod } 3$

- 1, 4, ... look for $1XX$
- 2, 5, ... look for $2XX$
- 3, 6, ... look for $3XX$

12345

- Hash on 1st item
- 2345
- 345

- Hash on 2nd item
- 567
- 356
- 367

- Hash on 3rd item
- 145
- 234
- 345

124
125
159
457
458
689
368
Example of the hash-tree for C_3

Hash function: mod 3

The subset function finds all the candidates contained in a transaction:
- At the root level it hashes on all items in the transaction
- At level i it hashes on all items in the transaction that come after item the i-th item
Discussion of the Apriori algorithm

• Much faster than the Brute-force algorithm
 – It avoids checking all elements in the lattice

• The running time is in the worst case $O(2^d)$
 – Pruning really prunes in practice

• It makes multiple passes over the dataset
 – One pass for every level k

• Multiple passes over the dataset is inefficient when we have thousands of candidates and millions of transactions
Making a single pass over the data: the AprioriTid algorithm

- The database is **not** used for counting support after the 1st pass!

- Instead information in data structure C_k' is used for counting support in every step

 - $C_k' = \{\langle \text{TID}, \{X_k\} > | X_k \text{ is a potentially frequent } k\text{-itemset in transaction with id=TID}\}$

 - C_1': corresponds to the original database (every item i is replaced by itemset $\{i\}$)

 - The member C_k' corresponding to transaction t is $\langle t.\text{TID}, \{c \in C_k | c \text{ is contained in } t\}\rangle$
The AprioriTID algorithm

- $L_1 = \{\text{frequent 1-itemsets}\}$
- $C_1' = \text{database } D$
- for (k=2, $L_{k-1}' \neq \text{empty}; k++$)
 - $C_k = \text{GenerateCandidates}(L_{k-1})$
 - $C_k' = \{\}$
 - for all entries $t \in C_{k-1}'$
 - $C_t = \{c \in C_k | t[c-c[k]]=1 \text{ and } t[c-c[k-1]]=1\}$
 - for all $c \in C_t$ {c.count++}
 - if ($C_t \neq \{\}$)
 - append C_t to C_k'
 endif
 endfor
 - $L_k = \{c \in C_k | c.\text{count} \geq \text{minsup}\}$
endfor
- return $U_k L_k$
AprioriTid Example (minsup=2)

Database D

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{1, 3, 4}</td>
</tr>
<tr>
<td>200</td>
<td>{2, 3, 5}</td>
</tr>
<tr>
<td>300</td>
<td>{1, 2, 3, 5}</td>
</tr>
<tr>
<td>400</td>
<td>{2, 5}</td>
</tr>
</tbody>
</table>

C_1'

<table>
<thead>
<tr>
<th>TID</th>
<th>Sets of itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{{1}, {3}, {4}}</td>
</tr>
<tr>
<td>200</td>
<td>{{2}, {3}, {5}}</td>
</tr>
<tr>
<td>300</td>
<td>{{1}, {2}, {3}, {5}}</td>
</tr>
<tr>
<td>400</td>
<td>{{2}, {5}}</td>
</tr>
</tbody>
</table>

L_1

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
</tbody>
</table>

C_2'

<table>
<thead>
<tr>
<th>TID</th>
<th>Sets of itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{{1 3}}</td>
</tr>
<tr>
<td>200</td>
<td>{{2 3}, {2 5}, {3 5}}</td>
</tr>
<tr>
<td>300</td>
<td>{{1 2}, {1 3}, {1 5}, {2 3}, {2 5}, {3 5}}</td>
</tr>
<tr>
<td>400</td>
<td>{{2 5}}</td>
</tr>
</tbody>
</table>

L_2

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

C_3'

<table>
<thead>
<tr>
<th>TID</th>
<th>Sets of itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>{{2 3 5}}</td>
</tr>
<tr>
<td>300</td>
<td>{{2 3 5}}</td>
</tr>
</tbody>
</table>

L_3

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{2 3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>
Discussion on the AprioriTID algorithm

- $L_1 = \{\text{frequent 1-itemsets}\}$
- $C_1' = \text{database } D$
- for (k=2, $L_{k-1}' \neq \text{empty}; k++$

 $C_k = \text{GenerateCandidates}(L_{k-1})$
 $C_k' = \{\}$
 for all entries $t \in C_{k-1}'$
 $C_t = \{c \in C_k | t[c-c[k]] = 1 \text{ and } t[c-c[k-1]] = 1\}$
 for all $c \in C_t \{c.\text{count}++\}$
 if ($C_t \neq \{\}$)
 append C_t to C_k'
 endif
 endfor
 $L_k = \{c \in C_k | c.\text{count} \geq \text{minsup}\}$
endfor
- return $U_k L_k$

- One single pass over the data

- C_k' is generated from C_{k-1}'

- For small values of k, C_k' could be larger than the database!

- For large values of k, C_k' can be very small
Apriori vs. AprioriTID

- *Apriori* makes multiple passes over the data while *AprioriTID* makes a single pass over the data.

- *AprioriTID* needs to store additional data structures that may require more space than *Apriori*.

- Both algorithms need to check all candidates’ frequencies in every step.
Implementations

• Lots of them around

• See, for example, the web page of Bart Goethals: http://www.adrem.ua.ac.be/~goethals/software/

• Typical input format: each row lists the items (using item id's) that appear in every row
Lecture outline

- **Task 1:** Methods for finding all frequent itemsets efficiently

- **Task 2:** Methods for finding association rules efficiently
Definition: Association Rule

Let D be database of transactions

- e.g.:

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A, B, C</td>
</tr>
<tr>
<td>1000</td>
<td>A, C</td>
</tr>
<tr>
<td>4000</td>
<td>A, D</td>
</tr>
<tr>
<td>5000</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>

- Let I be the set of items that appear in the database, e.g., $I=\{A, B, C, D, E, F\}$

- A rule is defined by $X \rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$, and $X \cap Y = \emptyset$

 - e.g.: $\{B, C\} \rightarrow \{A\}$ is a rule
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form $X \rightarrow Y$, where X and Y are non-overlapping itemsets
 - Example:
 $$\{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\}$$

- **Rule Evaluation Metrics**
 - **Support (s)**
 - Fraction of transactions that contain both X and Y
 - **Confidence (c)**
 - Measures how often items in Y appear in transactions that contain X

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Example:

$$\{\text{Milk, Diaper}\} \rightarrow \text{Beer}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$
Rule Measures: Support and Confidence

Find all the rules $X \rightarrow Y$ with minimum confidence and support

- **support**, s, probability that a transaction contains $\{X \cup Y\}$
- **confidence**, c, *conditional probability* that a transaction having X also contains Y

Let minimum support 50%, and minimum confidence 50%, we have

- $A \rightarrow C$ (50%, 66.6%)
- $C \rightarrow A$ (50%, 100%)
Example

<table>
<thead>
<tr>
<th>TID</th>
<th>date</th>
<th>items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10/10/99</td>
<td>{F,A,D,B}</td>
</tr>
<tr>
<td>200</td>
<td>15/10/99</td>
<td>{D,A,C,E,B}</td>
</tr>
<tr>
<td>300</td>
<td>19/10/99</td>
<td>{C,A,B,E}</td>
</tr>
<tr>
<td>400</td>
<td>20/10/99</td>
<td>{B,A,D}</td>
</tr>
</tbody>
</table>

What is the **support** and **confidence** of the rule: \{B,D\} \rightarrow \{A\}

- **Support:**
 - percentage of tuples that contain \{A,B,D\} = 75%

- **Confidence:**
 \[
 \frac{\text{number of tuples that contain \{A,B,D\}}}{\text{number of tuples that contain \{B,D\}}} = 100\%
 \]
Association-rule mining task

• Given a set of transactions D, the goal of association rule mining is to find all rules having
 – support $\geq \text{minsup}$ threshold
 – confidence $\geq \text{minconf}$ threshold
Brute-force algorithm for association-rule mining

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds

⇒ Computationally prohibitive!
Computational Complexity

• Given d unique items in I:
 – Total number of itemsets = 2^d
 – Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j}$$

$$= 3^d - 2^{d+1} + 1$$
Mining Association Rules

Example of Rules:

{Milk, Diaper} → {Beer} (s=0.4, c=0.67)
{Milk, Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk, Beer} (s=0.4, c=0.5)
{Milk} → {Diaper, Beer} (s=0.4, c=0.5)

Observations:

• All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
• Rules originating from the same itemset have identical support but can have different confidence
• Thus, we may decouple the support and confidence requirements
Mining Association Rules

- Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support $\geq \text{minsup}$

 - Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset
Rule Generation – Naive algorithm

• Given a frequent itemset X, find all non-empty subsets $y \subset X$ such that $y \rightarrow X - y$ satisfies the minimum confidence requirement

 – If $\{A,B,C,D\}$ is a frequent itemset, candidate rules:

 \[
 \begin{align*}
 &ABC \rightarrow D, &ABD \rightarrow C, &ACD \rightarrow B, &BCD \rightarrow A, \\
 &A \rightarrow BCD, &B \rightarrow ACD, &C \rightarrow ABD, &D \rightarrow ABC, \\
 &AB \rightarrow CD, &AC \rightarrow BD, &AD \rightarrow BC, &BC \rightarrow AD, \\
 &BD \rightarrow AC, &CD \rightarrow AB,
 \end{align*}
 \]

• If $|X| = k$, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)
Efficient rule generation

• How to efficiently generate rules from frequent itemsets?
 – In general, confidence does not have an anti-monotone property
 \[c(ABC \rightarrow D) \text{ can be larger or smaller than } c(AB \rightarrow D) \]
 – \textbf{But confidence of rules generated from the same itemset has an anti-monotone property}
 – Example: \(X = \{A,B,C,D\} \):
 \[c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD) \]
 – Why?

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
Rule Generation for Apriori Algorithm

Lattice of rules

Low Confidence Rule

Pruned Rules
Apriori algorithm for rule generation

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- \textbf{join}(CD \rightarrow AB, BD \rightarrow AC) would produce the candidate rule D \rightarrow ABC

- \textbf{Prune} rule D \rightarrow ABC if there exists a subset (e.g., AD \rightarrow BC) that does not have high confidence