Reducing the collection of itemsets: alternative representations and combinatorial problems
Too many frequent itemsets

• If \(\{a_1, \ldots, a_{100}\} \) is a frequent itemset, then there are

\[
\binom{100}{1} + \binom{100}{2} + \ldots + \binom{100}{100} = 2^{100} - 1
\]

\(1.27 \times 10^{30}\) frequent sub-patterns!

• There should be some more \textit{condensed} way to describe the data
Frequent itemsets maybe too many to be helpful

• If there are many and large frequent itemsets enumerating all of them is costly.

• We may be interested in finding the *boundary* frequent patterns.

• **Question:** Is there a good definition of such boundary?
Borders of frequent itemsets

- Itemset X is more *specific* than itemset Y if X superset of Y (notation: $Y < X$). Also, Y is more *general* than X (notation: $X > Y$).

- **The Border:** Let S be a collection of frequent itemsets and P the lattice of itemsets. The *border* $Bd(S)$ of S consists of all itemsets X such that *all more general itemsets* than X are in S and *no pattern more specific* than X is in S.

$$Bd(S) = \left\{ X \in P \mid \text{for all } Y \in P \text{ with } Y \prec X \text{ then } Y \in S, \right. \\
\left. \text{and for all } W \in P \text{ with } X \prec W \text{ then } W \notin S \right\}$$
Positive and negative border

\[Bd(S) = \left\{ X \in P \right\mid \text{for all } Y \in P \text{ with } Y \prec X \text{ then } Y \in S, \text{ and for all } W \in P \text{ with } X \prec W \text{ then } W \not\in S \right\} \]

- **Positive border**: Itemsets in the border that are also frequent (belong in \(S \))
 \[Bd^+(S) = \left\{ X \in S \right\mid \text{for all } Y \in P \text{ with } X \prec Y \text{ then } Y \not\in S \right\} \]

- **Negative border**: Itemsets in the border that are not frequent (do not belong in \(S \))
 \[Bd^-(S) = \left\{ X \in P \setminus S \right\mid \text{for all } Y \in P \text{ with } Y \prec X \text{ then } Y \in S \right\} \]
Examples with borders

• Consider a set of items from the alphabet: \{A,B,C,D,E\} and the collection of frequent sets

\[S = \{\{A\},\{B\},\{C\},\{E\},\{A,B\},\{A,C\},\{A,E\},\{C,E\},\{A,C,E\}\} \]

• The negative border of collection \(S \) is

\[\text{Bd}^{-}(S) = \{\{D\},\{B,C\},\{B,E\}\} \]

• The positive border of collection \(S \) is

\[\text{Bd}^{+}(S) = \{\{A,B\},\{A,C,E\}\} \]
Descriptive power of the borders

• **Claim:** A collection of frequent sets S can be *fully described* using only the positive border ($Bd^+(S)$) or only the negative border ($Bd^-(S)$).
Maximal patterns

Frequent patterns without proper frequent super pattern
Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent.
Maximal patterns

• The set of maximal patterns is the same as the positive border

• Descriptive power of maximal patterns:
 – Knowing the set of all maximal patterns allows us to reconstruct the set of all frequent itemsets!!

 – We can only reconstruct the set not the actual frequencies
Closed patterns

• An itemset is closed if none of its immediate supersets has the same support as the itemset

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Itemset Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{A,B,C,D}</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>{A,B,D}</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C,D}</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>4</td>
</tr>
<tr>
<td>{B}</td>
<td>5</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>4</td>
</tr>
<tr>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>{A,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,D}</td>
<td>3</td>
</tr>
<tr>
<td>{B,C}</td>
<td>3</td>
</tr>
<tr>
<td>{B,D}</td>
<td>4</td>
</tr>
<tr>
<td>{C,D}</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,B,D}</td>
<td>3</td>
</tr>
<tr>
<td>{A,C,D}</td>
<td>2</td>
</tr>
<tr>
<td>{B,C,D}</td>
<td>3</td>
</tr>
<tr>
<td>{A,B,C,D}</td>
<td>2</td>
</tr>
</tbody>
</table>
Maximal vs Closed Itemsets

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABC</td>
</tr>
<tr>
<td>2</td>
<td>ABCD</td>
</tr>
<tr>
<td>3</td>
<td>BCE</td>
</tr>
<tr>
<td>4</td>
<td>ACDE</td>
</tr>
<tr>
<td>5</td>
<td>DE</td>
</tr>
</tbody>
</table>

Transaction Ids

Not supported by any transactions
Maximal vs Closed Frequent Itemsets

Minimum support = 2

Closed and maximal

Closed but not maximal

Closed = 9
Maximal = 4
Why are closed patterns interesting?

- \(s(\{A,B\}) = s(A) \), i.e., \(\text{conf}(\{A\} \rightarrow \{B\}) = 1 \)

- We can infer that for every itemset \(X \),
 \[s(A \cup \{X\}) = s(\{A,B\} \cup X) \]

- No need to count the frequencies of sets \(X \cup \{A,B\} \) from the database!

- If there are lots of rules with confidence 1, then a significant amount of work can be saved
 - Very useful if there are strong correlations between the items and when the transactions in the database are similar
Why closed patterns are interesting?

• Closed patterns and their frequencies alone are sufficient representation for all the frequencies of all frequent patterns

• **Proof:** Assume a frequent itemset X:

 - X is closed $\Rightarrow s(X)$ is known
 - X is not closed \Rightarrow

 $s(X) = \max \{s(Y) \mid Y \text{ is closed and } X \text{ subset of } Y\}$
Maximal vs Closed sets

• Knowing all maximal patterns (and their frequencies) allows us to reconstruct the set of frequent patterns.

• Knowing all closed patterns and their frequencies allows us to reconstruct the set of all frequent patterns and their frequencies.
A more algorithmic approach to reducing the collection of frequent itemsets
Prototype problems: Covering problems

- **Setting:**
 - Universe of N elements $U = \{U_1, \ldots, U_N\}$
 - A set of n sets $S = \{s_1, \ldots, s_n\}$
 - Find a collection C of sets in S (C subset of S) such that $\bigcup_{c \in C} c$ contains many elements from U

- **Example:**
 - U: set of documents in a collection
 - s_i: set of documents that contain term t_i
 - Find a collection of terms that cover most of the documents
Prototype covering problems

- **Set cover problem**: Find a small collection \(C \) of sets from \(S \) such that all elements in the universe \(U \) are covered by some set in \(C \)

- **Best collection problem**: find a collection \(C \) of \(k \) sets from \(S \) such that the collection covers as many elements from the universe \(U \) as possible

- Both problems are NP-hard

- Simple approximation algorithms with provable properties are available and very useful in practice
Set-cover problem

• Universe of \(N \) elements \(U = \{U_1, \ldots, U_N\} \)
• A set of \(n \) sets \(S = \{s_1, \ldots, s_n\} \) such that \(U_i s_i = U \)

• **Question:** Find the smallest number of sets from \(S \) to form collection \(C \) (\(C \) subset of \(S \)) such that \(U \subseteq C \subseteq C = U \)

• The set-cover problem is **NP-hard** (what does this mean?)
Trivial algorithm

- Try all subcollections of S
- Select the smallest one that covers all the elements in U
- The running time of the trivial algorithm is $O(2^{|S|} |U|)$
- This is way too slow
Greedy algorithm for set cover

• Select first the largest-cardinality set s from S

• Remove the elements from s from U

• Recompute the sizes of the remaining sets in S

• Go back to the first step
As an algorithm

1. \(X = U \)
2. \(C = \{\} \)
3. \textbf{while} \(X \) is not empty \textbf{do}
 - For all \(s \in S \) let \(a_s = |s \text{ intersection } X| \)
 - Let \(s \) be such that \(a_s \) is \textit{maximal}
 - \(C = C \cup \{s\} \)
 - \(X = X \setminus s \)
How can this go wrong?

• No global consideration of how good or bad a selected set is going to be
How good is the greedy algorithm?

• Consider a minimization problem
 – In our case we want to minimize the *cardinality* of set \(C \)

• Consider an instance \(I \), and cost \(a^*(I) \) of the optimal solution
 – \(a^*(I) \): is the minimum number of sets in \(C \) that cover all elements in \(U \)

• Let \(a(I) \) be the cost of the approximate solution
 – \(a(I) \): is the number of sets in \(C \) that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation factor \(F \) if for all instances \(I \) we have that

\[
a(I) \leq F \times a^*(I)
\]

• *Can we prove any approximation bounds for the greedy algorithm for set cover?*
How good is the greedy algorithm for set cover?

• *(Trivial?)* Observation: The greedy algorithm for set cover has approximation factor $b = |s_{\text{max}}|$, where s_{max} is the set in S with the largest cardinality

• Proof:
 – $a^*(I) \geq N/|s_{\text{max}}|$ or $N \leq |s_{\text{max}}|a^*(I)$
 – $a(I) \leq N \leq |s_{\text{max}}|a^*(I)$
How good is the greedy algorithm for set cover? A tighter bound

• The greedy algorithm for set cover has approximation factor $F = O(\log |s_{\text{max}}|)$

• **Proof**: (From CLR “Introduction to Algorithms”)

Best-collection problem

• Universe of N elements $U = \{U_1, \ldots, U_N\}$
• A set of n sets $S = \{s_1, \ldots, s_n\}$ such that $U_i s_i = U$

• **Question:** Find the collection C consisting of k sets from S such that $f(C) = \left| U_{c \in C} \right|$ is maximized

• The best-collection problem is NP-hard

• Simple approximation algorithm has approximation factor $F = (e-1)/e$
Greedy approximation algorithm for the best-collection problem

- \(C = \emptyset\)
- **for every** set \(s\) in \(S\) and **not** in \(C\) compute the gain of \(s\):
 \[
g(s) = f(C \cup \{s\}) - f(C)
 \]
- Select the set \(s\) with the **maximum** gain
- \(C = C \cup \{s\}\)
- **Repeat until** \(C\) has \(k\) elements
Basic theorem

• The **greedy** algorithm for the best-collection problem has approximation factor $F = (e-1)/e$

• C^*: **optimal** collection of cardinality k
• C: collection output by the **greedy** algorithm
• $f(C) \geq (e-1)/e \times f(C^*)$
Submodular functions and the greedy algorithm

• A function f (defined on sets of some universe) is **submodular** if

 – for all sets S, T such that S is *subset* of T and x any element in the universe

 – $f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)$

• **Theorem:** For all maximization problems where the optimization function is **submodular**, the **greedy** algorithm has approximation factor

 \[F = \frac{(e-1)}{e} \]
Again: Can you think of a more algorithmic approach to reducing the collection of frequent itemsets
Approximating a collection of frequent patterns

• Assume a collection of frequent patterns S

• Each pattern $X \in S$ is described by the patterns that covers

 $\text{Cov}(X) = \{ Y | Y \in S \text{ and } Y \text{ subset of } X \}$

• **Problem:** Find k patterns from S to form set C such that

 $$|\bigcup_{X \in C} \text{Cov}(X)|$$

 is maximized
Frequent itemsets

Non-frequent itemsets

border

empty set