Reducing the collection of itemsets:
alternative representations and
combinatorial problems



Too many frequent itemsets

e If{a,, ..., a;po) IS @ frequent itemset, then there

are
100 100 100 100
+ + ...+ =2 =1
1 2 100

1.27*103° frequent sub-patterns!

 There should be some more condensed way to
describe the data



Frequent itemsets maybe too many to be
helpful

e |f there are many and large frequent itemsets
enumerating all of them is costly.

 We may be interested in finding the boundary
frequent patterns.

* Question: Is there a good definition of such
boundary?
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Borders of frequent itemsets

e |temset X is more specific than itemset Y if X superset of Y
(notation: Y<X). Also, Y is more general than X (notation: X>Y)

e The Border: Let S be a collection of frequent itemsets and P
the lattice of itemsets. The border Bd(S) of S consists of all
itemsets X such that all more general itemsets than X are in S
and no pattern more specific than X is in S.

forallY e PwithY < X thenY €S,
Bd(S)=<XeP

and for allW € Pwith X <W then W ¢ S




Positive and negative border

e Border

forallY e PwithY < X thenY €S,
Bd(S)=<XeP

and for allW € Pwith X <W then W ¢ S

e Positive border: Itemsets in the border that are also frequent
(belong in S)

Bd*(S)=1{X eSlforallY e Pwith X <Y then Y ¢S }

 Negative border: Itemsets in the border that are not frequent
(do not belong in S)

Bd(S)=1{X eP\S|forallY e Pwith Y < X thenY €S |



Examples with borders

 Consider a set of items from the alphabet:
{A,B,C,D,E} and the collection of frequent sets

S = {{AL{BL{CL{EL{A BL{A,CHL{AEL{C,EL{A,CEH}
 The negative border of collection S is
Bd(S) = {{p},8,C},{8,E}}
 The positive border of collection S is
Bd*(S) = {{a,B}.{A,C,E}}



Descriptive power of the borders

e Claim: A collection of frequent sets S can be
fully described using only the positive border
(Bd*(S)) or only the negative border (Bd-(S)).



Maximal patterns

Frequent patterns without proper frequent super
pattern



Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is
frequent
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Maximal patterns

e The set of maximal patterns is the same as the
positive border

e Descriptive power of maximal patterns:

— Knowing the set of all maximal patterns allows us to
reconstruct the set of all frequent itemsets!!

— We can only reconstruct the set not the actual
frequencies



Closed patterns

 Anitemset is closed if none of its immediate supersets has the
same support as the itemset

ltemset | Support

TID ltems E’g g
1 {A,B} (C} 3
2 {B,C,D} (D} 4
3 {A,B,C,D} {A.B} 4
4 {A,B,D} {A’C} 5
5 {A,B,C,D} {A:D} 3
{B,C} 3

{B,D} 4

{C,D} 3

Itemset

Support

{A,B,C}
{A,B,D}
{A,C,D}
{B,C,D}
{A,B,C,D}

N WNWN




Maximal vs Closed Itemsets

Transaction Ids

TID

ltems
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Maximal vs Closed Frequent Itemsets
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Why are closed patterns interesting?

s({A,B}) = s(A), i.e., conf({A}=>{B}) =1

We can infer that for every itemset X,
s(A U {X}) = s({A,B} U X)

No need to count the frequencies of sets X U {A,B} from the
database!

If there are lots of rules with confidence 1, then a significant
amount of work can be saved

— Very useful if there are strong correlations between the items and
when the transactions in the database are similar



Why closed patterns are interesting?

e Closed patterns and their frequencies alone
are sufficient representation for all the
frequencies of all frequent patterns

* Proof: Assume a frequent itemset X:
— X is closed =2 s(X) is known
— X is not closed =2
s(X) = max {s(Y) | Y is closed and X subset of Y}



Maximal vs Closed sets

e Knowing all maximal
patterns (and their
frequencies) allows us to
reconstruct the set of
frequent patterns
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e Knowing all closed
patterns and their
frequencies allows us to
reconstruct the set of all
frequent patterns and
their frequencies

ltemsets



A more algorithmic approach to
reducing the collection of frequent
itemsets



Prototype problems: Covering
problems

e Setting:
— Universe of N elements U = {U_,...,U,}
— AsetofnsetsS=1{s,,...,s,}

— Find a collection C of sets in S (C subset of S) such that
U..cccontains many elements from U

e Example:
— U: set of documents in a collection

— s.: set of documents that contain term t.

— Find a collection of terms that cover most of the
documents



Prototype covering problems

Set cover problem: Find a small collection C of sets from S
such that all elements in the universe U are covered by
some setin C

Best collection problem: find a collection C of k sets from S
such that the collection covers as many elements from the
universe U as possible

Both problems are NP-hard

Simple approximation algorithms with provable properties
are available and very useful in practice



Set-cover problem

Universe of N elements U = {U,,...,U}
A set of nsets S ={s,,...,s.} such that U;s. =U

Question: Find the smallest number of sets from
S to form collection C (C subset of S) such that

U c=U

The set-cover problem is NP-hard (what does this
mean?)



Trivial algorithm

Try all subcollections of S

Select the smallest one that covers all the
elementsin U

The running time of the trivial algorithm is
o(215]|ul)

This is way too slow



Greedy algorithm for set cover

Select first the largest-cardinality set s from S
Remove the elements from s from U
Recompute the sizes of the remaining setsin S

Go back to the first step



As an algorithm

e X=U

* C=4}

 while X is not empty do
— For all seS let a_=|s intersection X|
— Let s be such that a_ is maximal
—C=CU({s}
— X=X\s



How can this go wrong?

 No global consideration of how good or bad a
selected set is going to be



How good is the greedy algorithm?

Consider a minimization problem
— In our case we want to minimize the cardinality of set C

Consider an instance |, and cost a“(l) of the optimal solution
— a'(1): is the minimum number of sets in C that cover all elements in U

Let a(l) be the cost of the approximate solution
— a(l): is the number of sets in C that are picked by the greedy algorithm

An algorithm for a minimization problem has approximation factor F if for
all instances | we have that

a(l)sF x a*(l)

Can we prove any approximation bounds for the greedy algorithm for set
cover ?



How good is the greedy algorithm for
set cover?

e (Trivial?) Observation: The greedy algorithm
for set cover has approximation factor b =
1S, |, Where s__ is the setin S with the

largest cardinality

* Proof:
—a’()2N/|s,..l orN<|s__ [a*(l)
—a(l)sN< s, Ja*(l)



How good is the greedy algorithm for
set cover? A tighter bound

 The greedy algorithm for set cover has
approximation factor F = O(log |s

maxl)

e Proof: (From CLR “Introduction to
Algorithms”)



Best-collection problem

Universe of N elements U = {U,,...,U}
A set of nsets S = {s,,...,s,.} such that Us. =U

Question: Find the a collection C consisting of k sets
from S such that f (C) = |U__-c| is maximized

The best-colection problem is NP-hard

Simple approximation algorithm has approximation
factor F = (e-1)/e



Greedy approximation algorithm for
the best-collection problem
c={}

for every set s in S and not in C compute the
gain of s:

g(s) = f(C U {s}) - f(C)
Select the set s with the maximum gain
C=CU{s}
Repeat until C has k elements



Basic theorem

The greedy algorithm for the best-collection
problem has approximation factor F = (e-1)/e

C” : optimal collection of cardinality k

C : collection output by the greedy algorithm
f(C) = (e-1)/e x f(C")



Submodular functions and the greedy
algorithm

e A function f (defined on sets of some universe) is
submodular if

— for all sets S, T such that S is subset of T and x any
element in the universe

—f(SU {x})—f(S)=fTU{x})-F(T)

e Theorem: For all maximization problems where
the optimization function is submodular, the
greedy algorithm has approximation factor

F=(e-1)/e



Again: Can you think of a more
algorithmic approach to reducing the
collection of frequent itemsets



Approximating a collection of frequent
patterns

e Assume a collection of frequent patterns S

e Each pattern X € S is described by the patterns
that covers

e Cov(X)={Y | YeSandY subset of X}

* Problem: Find k patterns from S to form set C
such that

|Uy.c Cov(X)]
is maximized
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