Clustering: Partition Clustering



Lecture outline

e Distance/Similarity between data objects
e Data objects as geometric data points

e Clustering problems and algorithms
— K-means
— K-median
— K-center



What is clustering?

e A grouping of data objects such that the objects within a
group are similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are

distances are maximized

minimized @




Outliers

e Qutliers are objects that do not belong to any cluster or
form clusters of very small cardinality

cluster

o 'S outliers

* |nsome applications we are interested in discovering
outliers, not clusters (outlier analysis)



Why do we cluster?

e Clustering : given a collection of data objects group them so
that
— Similar to one another within the same cluster
— Dissimilar to the objects in other clusters

e Clustering results are used:
— As a stand-alone tool to get insight into data distribution
* Visualization of clusters may unveil important information
— As a preprocessing step for other algorithms

e Efficient indexing or compression often relies on clustering



Applications of clustering?

Image Processing
— cluster images based on their visual content

Web

— Cluster groups of users based on their access
patterns on webpages

— Cluster webpages based on their content
Bioinformatics

— Cluster similar proteins together (similarity wrt
chemical structure and/or functionality etc)

Many more...



The clustering task

e Group observations into groups so that the
observations belonging in the same group are
similar, whereas observations in different groups
are different

e Basic questions:
— What does “similar” mean

— What is a good partition of the objects? l.e., how is
the quality of a solution measured

— How to find a good partition of the observations



Observations to cluster

Real-value attributes/variables

— e.g., salary, height

Binary attributes

— e.g., gender (M/F), has_cancer(T/F)

Nominal (categorical) attributes

— e.g., religion (Christian, Muslim, Buddhist, Hindu, etc.)

Ordinal/Ranked attributes

— e.g., military rank (soldier, sergeant, lutenant, captain, etc.)

Variables of mixed types

— multiple attributes with various types



Observations to cluster

Usually data objects consist of a set of attributes (also
known as dimensions)

J. Smith, 20, 200K

If all d dimensions are real-valued then we can
visualize each data point as points in a d-dimensional

space

If all d dimensions are binary then we can think of each
data point as a binary vector



Distance functions

The distance d(x, y) between two objects xand y is a metric if

— d(i, j)=0 (non-negativity)

— d(i, i)=0 (isolation)

o d(lr J)= d(]r I) (symmetry)

— d(i, j) £ d(i, h)+d(h, j) (triangular inequality) [Why do we need it?]

The definitions of distance functions are usually different for
real, boolean, categorical, and ordinal variables.

Weights may be associated with different variables based on
applications and data semantics.



Data Structures
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Distance functions for binary vectors

e Jaccard similarity between binary vectors X and Y

Isim(X,Y) = 20
XuY

e Jaccard distance between binary vectors X and Y
Jdist(X,Y) = 1- JSim(X,Y)

. Examole i a2 a3 ¢ o5 oo
X 1 0 0 1 1 1
e JSim=1/6 Y 0 1 1 0 1 0
e Jdist= 5/6



Distance functions for real-valued vectors

Jl/p
Z(X -Y.)
i=1

e If p=1,L,isthe Manhattan (or city block) distance:
d
—1

° Lp norms or Minkowski distance:

iy uiP e o (P I

where p is a positive integer

L)X+ =Yo st Xy =Yy S %=



Distance functions for real-valued
vectors

e If p=2,L,isthe Euclidean distance:
A0 y)= (1%, =Y, 1%, =, [+t Xy =y, )

* Also one can use weighted distance:

_ v P v 2 R
d(x,y)_\/(wl|x1 x1| +W2|X2 x2| +...+Wd|Xd yd|)

d(x, y):wl‘xl—y1‘+wz‘x2—y2‘+...+wd‘xd _yd ‘

* Very often L P is used instead of L, (why?)



Partitioning algorithms: basic concept

e Construct a partition of a set of n objects into a set of k clusters

— Each object belongs to exactly one cluster

— The number of clusters k is given in advance



The k-means problem

 Given a set X of n points in a d-dimensional space
and an integer k

e Task: choose a set of k points {c,, c,,...,c,} in the
d-dimensional space to form clusters {C,, C,,...,C, }

such that ‘
Cost(C)=> Y 'L, (x—c)

i::l. XECi
IS minimized
e Some special cases: k=1,k=n



Algorithmic properties of the k-means

problem

NP-hard if the dimensionality of the data is at least 2
(d>=2)

Finding the best solution in polynomial time is
infeasible

For d=1 the problem is solvable in polynomial time
(how?)

A simple iterative algorithm works quite well in
practice



The k-means algorithm

One way of solving the k-means problem
Randomly pick k cluster centers {c,,...,c,}

For each i, set the cluster C, to be the set of points in X
that are closer to c; than they are to ¢ for all i#]

For each i let c, be the center of cluster C. (mean of the
vectors in C)

Repeat until convergence



Properties of the k-means algorithm

e Finds a local optimum
e Converges often quickly (but not always)

 The choice of initial points can have large
influence in the result
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Discussion k-means algorithm

e Finds a local optimum
e Converges often quickly (but not always)

 The choice of initial points can have large

influence
— Clusters of different densities

— Clusters of different sizes

e Qutliers can also cause a problem (Example?)



Some alternatives to random
initialization of the central points

 Multiple runs
— Helps, but probability is not on your side

e Select original set of points by methods other
than random . E.g., pick the most distant
(from each other) points as cluster centers
(kmeans++ algorithm)



The k-median problem

e Given a set X of n points in a d-dimensional
space and an integer k

 Task: choose a set of k points {c,,c,,...,c, } from
X and form clusters {Cl,CZ, .,C.} such that

Cost(C) = Z Z L, (x,C)

is minimized



The k-medoids algorithm

e Or... PAM (Partitioning Around Medoids, 1987)

— Choose randomly k medoids from the original dataset
X

— Assign each of the n-k remaining points in X to their
closest medoid

— iteratively replace one of the medoids by one of the
non-medoids if it improves the total clustering cost



Discussion of PAM algorithm

The algorithm is very similar to the k-means
algorithm

It has the same advantages and disadvantages

How about efficiency?



CLARA (Clustering Large Applications)

It draws multiple samples of the data set, applies PAM on each
sample, and gives the best clustering as the output

Strength: deals with larger data sets than PAM

Weakness:

— Efficiency depends on the sample size

— A good clustering based on samples will not necessarily represent a
good clustering of the whole data set if the sample is biased



The k-center problem

e Given a set X of n points in a d-dimensional space
and an integer k

e Task: choose a set of k points from X as cluster
centers {c,,c,,...,c, } such that for clusters

{C,,C,,-..,C.}
R(C) =max; max, d(x,c;)

is minimized



Algorithmic properties of the k-centers
problem

e NP-hard if the dimensionality of the data is at least 2
(d>=2)

* Finding the best solution in polynomial time is
infeasible

 For d=1 the problem is solvable in polynomial time
(how?)

 Asimple combinatorial algorithm works well in practice



The furthest-first traversal algorithm

* Pick any data point and label it as point 1

e Fori=2,3,....k
— Find the unlabelled point furthest from {1,2,...,i-1} and
label it as i.

//Use d(x,S) = min
point from a set

Jes d(x,y) to identify the distance //of a

— (i) = argmin, ;d(i,j)
— Ry=d(i,m(i))

e Assign the remaining unlabelled points to their
closest labelled point



The furthest-first traversal is a 2-
approximation algorithm

* Claiml: R2R, 2... 2R,

 Proof:
— R;=d(j,(j)) = d(j,{1,2,...,j-1})

Sd(jl{llzl"'li-l}) //j >
<d(i,{1,2,..,i-1}) =R



The furthest-first traversal is a 2-
approximation algorithm

* Claim 2: If Cis the clustering reported by the
farthest algorithm, then R(C)=R,,,

* Proof:

— For all i > k we have that
d(i, {1,2,...,k})< d(k+1,{1,2,...,k}) = R,



The furthest-first traversal is a 2-
approximation algorithm

e Theorem: If Cis the clustering reported by the farthest algorithm,
and C'is the optimal clustering, then then R(C)<2xR(C")

* Proof:
— Let C*,, C*,,..., C* be the clusters of the optimal k-clustering.

— If these clusters contain points {1,...,k} then R(C)< 2R(C") (triangle
inequality)

— Otherwise suppose that one of these clusters contains two or more of
the points in {1,...,k}. These points are at distance at least R, from each
other. Thus clusters must have radius

%R, 2%R,,,= % R(C)



What is the right number of clusters?

e ...or who sets the value of k?

 For n points to be clustered consider the case
where k=n. What is the value of the error
function

e What happens when k=17

* Since we want to minimize the error why don’t
we select always k = n?



Occam’s razor and the minimum
description length principle

Clustering provides a description of the data

For a description to be good it has to be:
— Not too general
— Not too specific

Penalize for every extra parameter that one has to pay

Penalize the number of bits you need to describe the extra
parameter

So for a clustering C, extend the cost function as follows:
NewCost(C) = Cost( C) + |C| x logn
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