Hierarchical Clustering ### Hierarchical Clustering - Produces a set of *nested clusters* organized as a hierarchical tree - Can be visualized as a dendrogram - A tree-like diagram that records the sequences of merges or splits ### Strengths of Hierarchical Clustering - No assumptions on the number of clusters - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level - Hierarchical clusterings may correspond to meaningful taxonomies - Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc # Hierarchical Clustering: Problem definition Given a set of points X = {x₁,x₂,...,x_n} find a sequence of *nested partitions* P₁,P₂,...,P_n of X, consisting of 1, 2,...,n clusters respectively such that Σ_{i=1...n}Cost(P_i) is minimized. - Different definitions of Cost(P_i) lead to different hierarchical clustering algorithms - Cost(P_i) can be formalized as the cost of any partitionbased clustering ### Hierarchical Clustering Algorithms - Two main types of hierarchical clustering - Agglomerative: - Start with the points as individual clusters - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left #### Divisive: - Start with one, all-inclusive cluster - At each step, split a cluster until each cluster contains a point (or there are k clusters) - Traditional hierarchical algorithms use a similarity or distance matrix - Merge or split one cluster at a time #### Complexity of hierarchical clustering Distance matrix is used for deciding which clusters to merge/split At least quadratic in the number of data points Not usable for large datasets #### Agglomerative clustering algorithm - Most popular hierarchical clustering technique - Basic algorithm - 1. Compute the distance matrix between the input data points - Let each data point be a cluster - 3. Repeat - 4. Merge the two closest clusters - 5. Update the distance matrix - **6. Until** only a single cluster remains - Key operation is the computation of the distance between two clusters - Different definitions of the distance between clusters lead to different algorithms ### Input/Initial setting Start with clusters of individual points and a distance/proximity matrix #### Intermediate State After some merging steps, we have some clusters | | C1 | C2 | C 3 | C4 | C 5 | |------------|----|----|------------|----|------------| | <u>C1</u> | | | | | | | C2 | | | | | | | C 3 | | | | | | | <u>C4</u> | | | | | | | C 5 | | | | | | **Distance/Proximity Matrix** #### Intermediate State • Merge the two closest clusters (C2 and C5) and update the distance matrix. #### **Distance/Proximity Matrix** ### After Merging "How do we update the distance matrix?" | | | | C2 | | | | |-------------|------------|-----------|----------------|----|----|--| | | | C1 | U
C5 | C3 | C4 | | | | C1 | | ? | | | | | C2 U | C5 | ? | ? | ? | ? | | | | C 3 | | ? | | | | | | C4 | | ? | | | | #### Distance between two clusters Each cluster is a set of points - How do we define distance between two sets of points - Lots of alternatives - Not an easy task #### Distance between two clusters Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j The distance is defined by the two most similar objects $$D_{sl}(C_i, C_j) = \min_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$ ### Single-link clustering: example Determined by one pair of points, i.e., by one link in the proximity graph. | | I 1 | l 2 | I 3 | I 4 | <u> 15</u> | |----|--------------------------------------|------------|------------|------------|------------| | 11 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 | | 12 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 | | 13 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 | | 14 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 | | 15 | 1.00
0.90
0.10
0.65
0.20 | 0.50 | 0.30 | 0.80 | 1.00 | ### Single-link clustering: example **Nested Clusters** Dendrogram #### Strengths of single-link clustering **Original Points** **Two Clusters** • Can handle non-elliptical shapes ### Limitations of single-link clustering **Original Points** **Two Clusters** - Sensitive to noise and outliers - It produces long, elongated clusters #### Distance between two clusters Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j The distance is defined by the two most dissimilar objects $$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$ #### Complete-link clustering: example Distance between clusters is determined by the two most distant points in the different clusters | | I 1 | | | | | |----|------------|------|------|------|--------------------------------------| | 11 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 | | 12 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 | | 13 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 | | 14 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 | | 15 | 0.20 | 0.50 | 0.30 | 0.80 | 0.20
0.50
0.30
0.80
1.00 | #### Complete-link clustering: example **Nested Clusters** **Dendrogram** #### Strengths of complete-link clustering - More balanced clusters (with equal diameter) - Less susceptible to noise #### Limitations of complete-link clustering - Tends to break large clusters - All clusters tend to have the same diameter small clusters are merged with larger ones #### Distance between two clusters Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_i $$D_{avg}(C_i, C_j) = \frac{1}{|C_i| \times |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$ ### Average-link clustering: example Proximity of two clusters is the average of pairwise proximity between points in the two clusters. | _ | I 1 | 12 | I 3 | 4 | 1 5 | |----|------------|------|------------|------------|--------------------------------------| | 11 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20
0.50
0.30
0.80
1.00 | | 12 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 | | 13 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 | | 14 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 | | 15 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 | #### Average-link clustering: example **Nested Clusters** **Dendrogram** ### Average-link clustering: discussion Compromise between Single and Complete Link - Strengths - Less susceptible to noise and outliers - Limitations - Biased towards globular clusters #### Distance between two clusters Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j $$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$ #### Distance between two clusters Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ii} $$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$ - r_i: centroid of C_i - r_i: centroid of C_i - r_{ij}: centroid of C_{ij} #### Ward's distance for clusters - Similar to group average and centroid distance - Less susceptible to noise and outliers - Biased towards globular clusters - Hierarchical analogue of k-means - Can be used to initialize k-means #### Hierarchical Clustering: Comparison ## Hierarchical Clustering: Time and Space requirements - For a dataset X consisting of n points - O(n²) space; it requires storing the distance matrix - O(n³) time in most of the cases - There are n steps and at each step the size n² distance matrix must be updated and searched - Complexity can be reduced to O(n² log(n)) time for some approaches by using appropriate data structures ### Divisive hierarchical clustering Start with a single cluster composed of all data points Split this into components Continue recursively Computationally intensive, less widely used than agglomerative methods