Lecture outline

- Clustering aggregation
 - Reference: A. Gionis, H. Mannila, P. Tsaparas: Clustering aggregation, ICDE 2004
- Co-clustering (or bi-clustering)
- References:
 - A. Anagnostopoulos, A. Dasgupta and R. Kumar: Approximation Algorithms for co-clustering, PODS 2008.
 - K. Puolamaki. S. Hanhijarvi and G. Garriga: An approximation ratio for biclustering, Information Processing Letters 2008.

Clustering aggregation

- Many different clusterings for the same dataset!
 - Different objective functions
 - Different algorithms
 - Different number of clusters
- Which clustering is the best?
 - Aggregation: we do not need to decide, but rather find a reconciliation between different outputs

The clustering-aggregation problem

- Input
 - $n \text{ objects } X = \{x_1, x_2, ..., x_n\}$
 - m clusterings of the objects $C_1, ..., C_m$
 - partition: a collection of disjoint sets that cover X
- Output
 - a single partition C, that is as close as possible to all input partitions
- How do we measure *closeness of clusterings*?
 - disagreement distance

Disagreement distance

- For object x and clustering C, C(x) is the index of set in the partition that contains x
- For two partitions C and P, and objects x,y in X define

$$I_{C,P}(x, y) = \begin{cases} 1 & \text{if } C(x) = C(y) \text{ and } P(x) \neq P(y) \\ & OR \\ & \text{if } C(x) \neq C(y) \text{ AND } P(x) = P(y) \\ 0 & \text{otherwise} \end{cases}$$

U	С	Ρ
x ₁	1	1
x ₂	1	2
X ₃	2	1
X ₄	3	3
X ₅	3	4

if I_{P,Q}(x,y) = 1 we say that x,y create a disagreement between partitions P and Q

•
$$D(P, Q) = \sum_{(x, y)} I_{P,Q}(x, y)$$

Metric property for disagreement distance

- For clustering C: D(C,C) = 0
- D(C,C')≥0 for every pair of clusterings C, C'
- D(C,C') = D(C',C)
- Triangle inequality?
- It is sufficient to show that for each pair of points x,y
 ∈X: I_{x,y}(C₁,C₃)≤ I_{x,y}(C₁,C₂) + I_{x,y}(C₂,C₃)
- I_{x,y} takes values 0/1; triangle inequality can only be violated when

 $-I_{x,y}(C_1,C_3)=1$ and $I_{x,y}(C_1,C_2)=0$ and $I_{x,y}(C_2,C_3)=0$ - Is this possible?

Clustering aggregation

• Given partitions C₁,...,C_m find C such that

$$D(C) = \sum_{i=1}^{m} D(C, C_i)$$

the aggregation cost

is minimized

U	C ₁	C ₂	C ₃	С
X ₁	1	1	1	1
x ₂	1	2	2	2
X ₃	2	1	1	1
X ₄	2	2	2	2
X ₅	3	3	3	3
x ₆	3	4	3	3

• Clustering categorical data

U	City	Profession	Nationality
x ₁	New York	Doctor	U.S.
x ₂	New York	Teacher	Canada
X ₃	Boston	Doctor	U.S.
X ₄	Boston	Teacher	Canada
X ₅	Los Angeles	Lawer	Mexican
х ₆	Los Angeles	Actor	Mexican

• The two problems are equivalent

- Identify the correct number of clusters
 - the optimization function does not require an explicit number of clusters

- Detect outliers
 - outliers are defined as points for which there is no consensus

- Improve the robustness of clustering algorithms
 - different algorithms have different weaknesses.
 - combining them can produce a better result.

- Privacy preserving clustering
 - different companies have data for the same users.
 They can compute an aggregate clustering without sharing the actual data.

Complexity of Clustering Aggregation

- The clustering aggregation problem is NP-hard
 - the median partition problem [Barthelemy and LeClerc 1995].
- Look for heuristics and approximate solutions.

A simple 2-approximation algorithm

• The disagreement distance D(C,P) is a metric

- The algorithm BEST: Select among the input clusterings the clustering C* that minimizes D(C*).
 - a 2-approximate solution. Why?

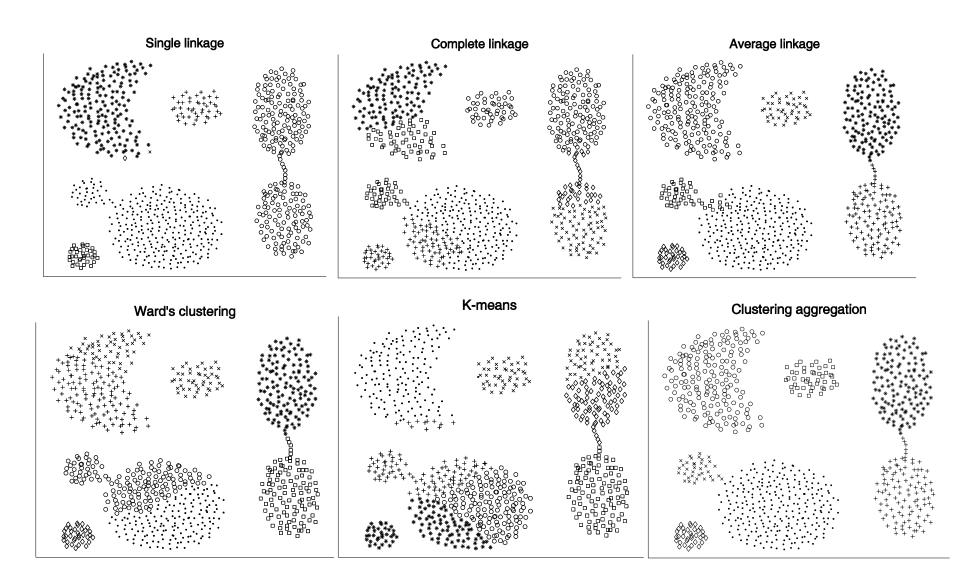
A 3-approximation algorithm

- The **BALLS** algorithm:
 - Select a point x and look at the set of points B within distance ½ of x
 - If the average distance of x to B is less than ¼ then create the cluster BU{p}
 - Otherwise, create a singleton cluster {p}
 - Repeat until all points are exhausted
- Theorem: The **BALLS** algorithm has worst-case approximation factor **3**

Other algorithms

- AGGLO:
 - Start with all points in singleton clusters
 - Merge the two clusters with the smallest average inter-cluster edge weight
 - Repeat until the average weight is more than $\frac{1}{2}$
- LOCAL:
 - Start with a random partition of the points
 - Remove a point from a cluster and try to merge it to another cluster, or create a singleton to improve the cost of aggregation.
 - Repeat until no further improvements are possible

Clustering Robustness

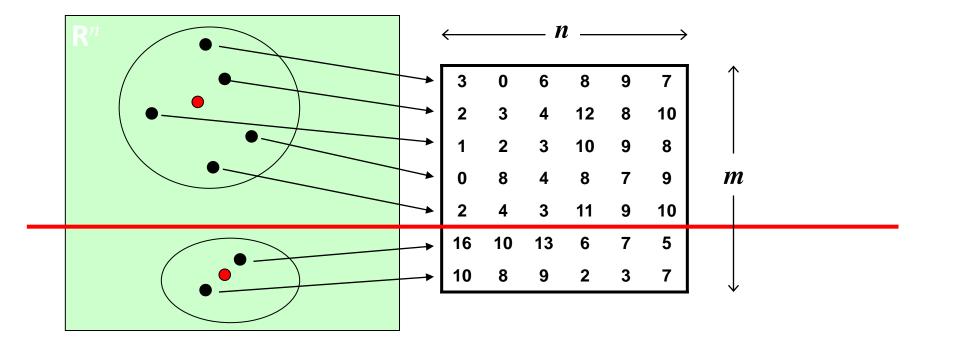


Lecture outline

- Clustering aggregation
 - Reference: A. Gionis, H. Mannila, P. Tsaparas: Clustering aggregation, ICDE 2004
- Co-clustering (or bi-clustering)
- References:
 - A. Anagnostopoulos, A. Dasgupta and R. Kumar: Approximation Algorithms for co-clustering, PODS 2008.
 - K. Puolamaki. S. Hanhijarvi and G. Garriga: An approximation ratio for biclustering, Information Processing Letters 2008.

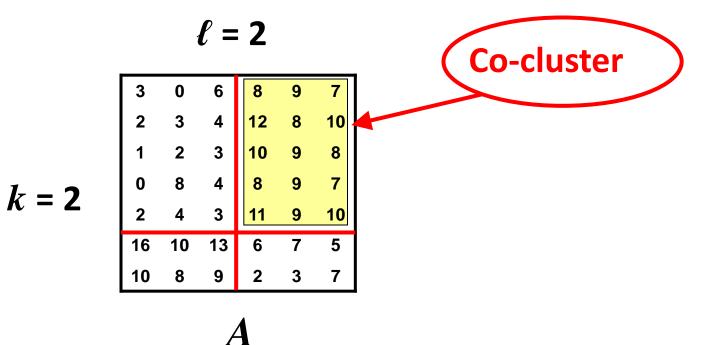
Clustering

- *m* points in **R**^{*n*}
- Group them to k clusters
- Represent them by a matrix $A \in \mathbf{R}^{m \times n}$
 - A point corresponds to a row of A
- **Cluster:** Partition the rows to k



Co-Clustering

• **Co-Clustering:** Cluster rows and columns of A simultaneously:



Motivation: Sponsored Search

Web Images Video Local Shopping more Car insurance Search Options	YAHOO!	
Also try: car insurance quotes, cheap car insurance, geico car insurance, More SPONSOR RESULTS GEICO Car Insurance Www.GEICO.com - GEICO could save you over \$500. Get an instant insurance quote. Progressive Car Insurance; Official Site www.progressive.com - Get our rates and our top competitors'. You could save hundreds. Esurance - Online Auto Insurance www.esurance.com - Get a quote, compare quotes and buy your policy instantly online. AAA Insurance www.aaa.com/insurance - Get 10% off your auto policy when you insure your auto & home with	SPONSOR RESUL S AIG Auto Insurance - Instant Quotes Instant, online, accurate car insurance quotes direct from AIG Auto www.aigauto.com <u>California Insurance Quotes</u> <u>Online</u> Compare auto insurance quotes from top companies online. www.Insurance.com	Ads
 Allstate - Auto Insurance Quote, Anonymous Online Car Insurance Save on Car Insurance with Your Choice Auto Insurance: Accident Forgiveness, Deductible Rewards, Safe Driver Bonus, & New Car Replacement. Allstate Auto Insurance near you auto-insurance.allstate.com - 53k - <u>Cached</u> Esurance, com - Online Auto Quotes, Comparisons and Resources At Esurance, save hundreds on your auto insurance today by comparing quotes online. Quick Links: <u>Get A Quote</u> www.esurance.com 	California Car Insurance Buy, print car insurance in 10 minutes- with accidents, violations. www.TheGeneral.com Auto Insurance Quotes Get Free Quote from Liberty Mutual. No Obligation. Apply in Minutes. www.LibertyMutual.com USAA Auto Insurance Switch And You Could Save More.	

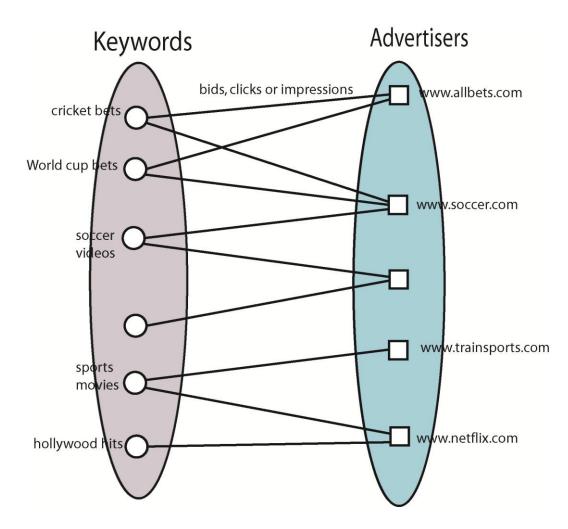
- Advertisers bid on keywords
- A user makes a query
- Show ads of advertisers that are relevant and have high bids
- User clicks or not an ad

Motivation: Sponsored Search

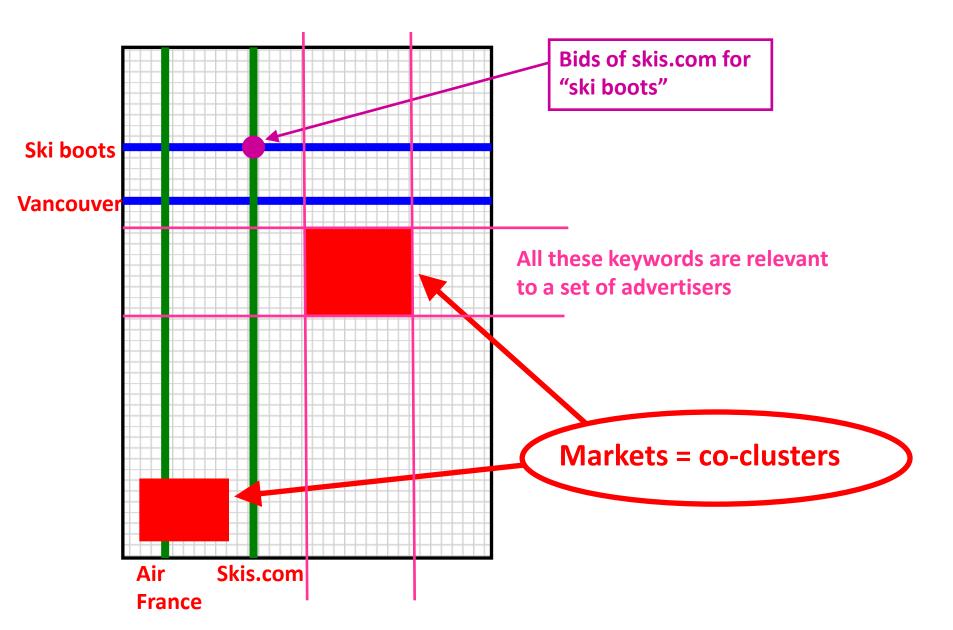
• For every

(*advertiser, keyword*) pair we have:

- Bid amount
- Impressions
- # clicks
- Mine information at query time
 - Maximize # clicks / revenue



Co-Clusters in Sponsored Search



Co-Clustering in Sponsored Search

Applications:

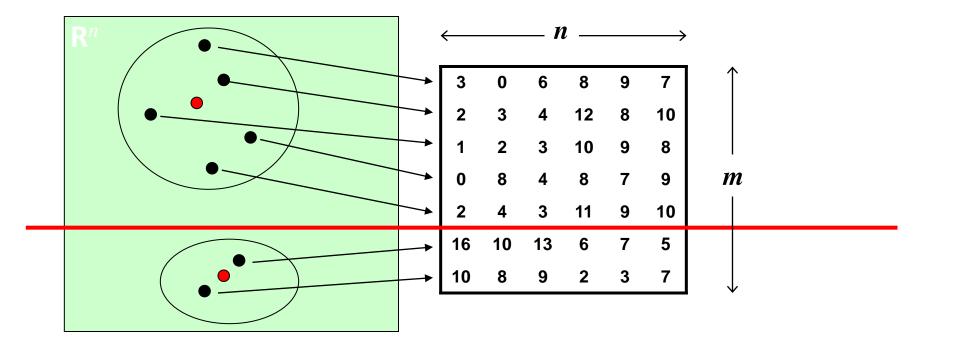
• Keyword suggestion

Recommend to advertisers other relevant keywords

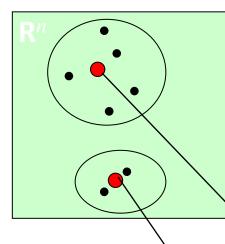
- Broad matching / market expansion
 - Include more advertisers to a query
- Isolate submarkets
 - Important for economists
 - Apply different advertising approaches
- Build taxonomies of advertisers / keywords

Clustering of the rows

- *m* points in **R**^{*n*}
- Group them to *k* clusters
- Represent them by a matrix $A \in \mathbb{R}^{m \times n}$
 - A point corresponds to a row of A
- **Clustering:** Partitioning of the rows into *k* groups



Clustering of the columns

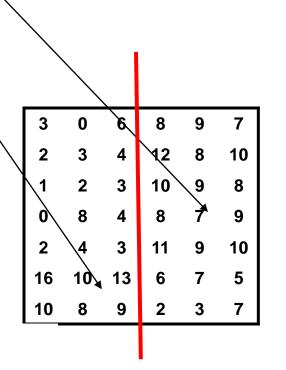


• *n* points in **R**^{*m*}

groups

- Group them to *k* clusters
- Represent them by a matrix $A \in \mathbb{R}^{m \times n}$
 - A point corresponds to a column of **A**
- **Clustering:** Partitioning of the columns into *k*

m



3 3 3 9

Cost of clustering

2	0	C	0	0	7
3	0	6	8	9	1
2	3	4	12	8	10
1	2	3	10	9	8
0	8	4	8	7	9
2	4	3	11	9	10
16	10	13	6	7	5
10	8	9	2	3	7

Original data points A

1.6	3.4	4	9.8	8.4	8.8
1.6	3.4	4	9.8	8.4	8.8
1.6	3.4	4	9.8	8.4	8.8
1.6	3.4	4	9.8	8.4	<mark>8.8</mark>
1.6	3.4	4	9.8	8.4	8.8
13	9	11	4	5	6
13	9	11	4	5	6

Data representation A'

- In A' every point in A (row or column) is replaced by the corresponding representative (row or column)
- The quality of the clustering is measured by computing distances between the data in the cells of A and A'.
- k-means clustering: $cost = \sum_{i=1...n} \sum_{j=1...m} (A(i,j)-A'(i,j))^2$
- k-median clustering: $cost = \sum_{i=1...n} \sum_{j=1...m} |A(i,j)-A'(i,j)|$

Co-Clustering

- **Co-Clustering:** Cluster rows and columns of $A \in \mathbb{R}^{m \times n}$ simultaneously
- k row clusters, **e** column clusters
- Every cell in A is represented by a cell in A'
- •All cells in the same co-cluster are represented by the same value in the cells of A'

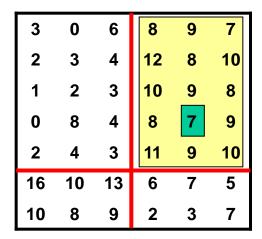
3	0	6	8	9	7
2	3	4	12	8	10
1	2	3	10	9	8
0	8	4	8	9	7
2	4	3	11	9	10
16	10	13	6	7	5
10	8	9	2	3	7

Original data A

3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
11	11	11	5	5	5
11	11	11	5	5	5

Co-cluster representation A'

Co-Clustering Objective Function



			_		
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
11	11	11	5	5	5
11	11	11	5	5	5

- In A' every point in A (row or column) is replaced by the corresponding representative (row or column)
- The quality of the clustering is measured by computing distances between the data in the cells of A and A'.
- k-means Co-clustering: $cost = \sum_{i=1...n} \sum_{j=1...m} (A(i,j)-A'(i,j))^2$
- k-median Co-clustering: $cost = \sum_{i=1...n} \sum_{j=1...m} |A(i,j)-A'(i,j)|$

Some Background

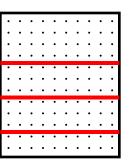
- A.k.a.: biclustering, block clustering, ...
- Many objective functions in co-clustering
 - This is one of the easier
 - Others factor out row-column average (priors)
 - Others based on information theoretic ideas (e.g. KL divergence)
- A lot of existing work, but mostly heuristic
 - k-means style, alternate between rows/columns
 - Spectral techniques

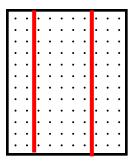
Algorithm

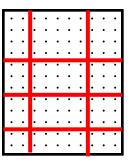
1. Cluster rows of *A*

2. Cluster columns of *A*

3. Combine







Properties of the algorithm

Theorem 1. Algorithm with optimal row/column clusterings is 3-approximation to co-clustering optimum.

Theorem 2. For L_2 distance function, the algorithm with optimal row/column clusterings is a 2-approximation.

Algorithm--details

- Clustering of the n rows of A assigns every row to a cluster with cluster name {1,...,k}
 – R(i)= r_i with 1≤ r_i ≤k
- Clustering of the m columns of A assigns every column to a cluster with cluster name {1,..., e}
 - $-C(j)=c_j \text{ with } 1 \le c_j \le \ell$
- $A'(i,j) = \{r_i, c_j\}$
- (i,j) is in the same co-cluster as (i',j') if
 A'(i,j)=A'(i',j')